Pre-2015) Presented by Mike Hughes (Owner of Monacowatts LLC

Total Page:16

File Type:pdf, Size:1020Kb

Pre-2015) Presented by Mike Hughes (Owner of Monacowatts LLC ROADMASTER SUSPENSION & CHASSIS (Pre-2015) Presented by Mike Hughes (owner of MonacoWatts LLC) Good Morning Fellow Coach Owners. I am here to discuss the Roadmaster Chassis and the design issues surrounding its driving and handling characteristics. I will cover a broad base of information and present you with proven cures for the issues involved with the RR8, and RR10 Roadmaster Chassis. (Pre 2015) This is NOT a ride seminar. Ride and Handling are two VERY different subjects when it comes to the Roadmaster Chassis. The Roadmaster Chassis A chassis that was designed for inner city bus use by the Chrysler Corporation and purchased by Monaco for use in their motorhomes. We believe the chassis was not thoroughly tested on the highway before Monaco began motorhome production. Does your coach wander ? Do you see-saw the wheel ? Is your driving experience stressful ? Do construction zones make you sweat ? Does the wind, ruts, and passing trucks “push” your coach around ? Roadmaster Chassis Would you like to know why your coach is doing what it is doing ? RR8 & RR10 Chassis Front and Rear H-Frame movement. Understanding how the Raised Rail (RR) coach frame, H-Frame, Panhard Bar, Trailing Arms, and Axle operate together. The H-Frame Sub Assembly When your Roadmaster chassis equipped coach wanders from one side of your lane to the other constantly on a smooth, straight highway, it does so because the “sub-assembly”, referred to as the “H- frame”, and to which both your front and rear axles are mounted, IS MOVING AND CHANGING DIRECTION, EVEN WHEN YOUR STEERING WHEEL IS HELD MOTIONLESS. The basic design of the chassis is flawed. The “H-frame” to which your front (and rear) axles are mounted, is attached to your COACH frame by four “trailing arms” which run fore-and-aft, and one Panhard bar which runs crossways of your coach. The purpose of the Panhard rod is to stabilize the H-frame, and prevent it from moving side-to-side. Without the Panhard rod, the relatively spindly trailing arms could easily be pushed from side to side by any external force, such as road ruts or winds. Without the Panhard rod, your coach’s wheels could easily extend out past your wheel wells when acted on by any side force. Unfortunately, due to the natural “give” in the bushings at the ends of the trailing arms, and the relatively spindly nature of the trailing arms themselves, one Panhard rod only ensures that the H-frame cannot make a HUGE movement, and cause the wheels to extend past the wheel wells. Although the H-frame cannot make a large movement side-to-side, it can still TWIST under your coach. This twisting is responsible for your coach’s instability even on smooth, straight roads. To have your coach track straight, we need something to prevent this twisting. WATTS LINKAGE (Watts Link) Watt's linkage (also known as "parallel linkage") is a type of mechanical linkage invented by James Watt (19 January 1736 – 25 August 1819) in which the central moving point of the linkage is constrained to travel on an approximation to a straight line. It was described in Watt's patent specification of 1784 for the Watt steam engine. It is also used in automobile suspensions, allowing the axle of a vehicle to travel vertically while preventing sideways motion. -WikiPedia "The watts system consists of two horizontal rods of equal length mounted at each side of the chassis or axle. In between these two rods, a short vertical bar (bell crank) is connected. The center of this bell crank – the point which is constrained in a straight line motion - is mounted to the center of the axle or coach framework (inverted). All pivoting points are free to rotate in a vertical plane." -WikiPedia What does a “Watts Link” do ? The addition of the Watts Linkage on the front and rear (if available) stops H-Frame movement. The center of the axle is held in perfect alignment while the vehicle moves up and down. Holding the axle dead center in the coach stops the wandering. It's an amazing change in driving. No longer are you exhausted after driving just a few hours. Our users report trips from 6, 8 and 10 hours without the fatigue. The coach will experience GREATLY reduced body roll as it will track around a corner almost flat. Watts Link in Action 2014 Watts Link “Party” (Test Coaches) Watts Links Fabricated and Installed. Front Hydraulic Jack Mount Watts Link Prototype (Installed 5+ years and 40,000+ Miles ago) Rear Watts Link (2011 Monaco Knight) Trailing Arms Rear Trailing Arm deflection affects the heavy end of the coach and causes movement about the axle. Tag Axle coaches are designed slightly different, but can still be affected by Trailing Arm deflection. Rear Cross Bars (Used to eliminate rear trailing arm deflection ) So what are Cross Bars ? Why do I need both the Watts Link and the Cross Bars? The rear suspension on the RR8 & RR10 chassis uses trailing arms to position the axle fore and aft under the coach. These trailing arms are made of 2" x 2" tubing and are more than 6' in length. Given the long length, the trailing arms actually deflect when side forces are applied to the coach (such as broadside winds or passing trucks). You can add to this the movement from the 10 rubber bushings used in the arms and panhard bar. This deflection is small but more than enough to make the rear of the coach wander constantly. Triangulating these trailing arms with Cross Bars (sometimes called Diagonal Track Bars) holds them in perfect alignment while still allowing proper motion of the axle. “Testimonials” Installed the rear cross bar an the front watts on are 2007 Monaco knight lot of different in the handling now . This coach was a handful until now. Just drove the Coach again for the second time after installing the Front & Rear Watts Linkage and the additional cross bars on the Rear. It was like driving a brand new rig. Probably drove better than when it was new. Can't wait for our next big trip! “Testimonials” Once again, sure do want to thank everyone for a great time at Quartzsite. Especially want to give a special thanks to Mike Hughes. That Watts Link is incredible. I have never enjoyed driving my coach as much as I did getting back here. Even in the wind, no sway or movement. Even as trucks would go by, no sway or push. Thanks again Mike. Recommend to everyone thinking about it. Just do it!!! The front watts continues to make driving the beast a pleasure, compared to without it. Thanks Mike and to everyone for their willingness to solve this problem! I look forward very much to adding the rear watts and cross links next month. Monaco Watts You now know there is a fix and not just a band aid for the REAL chassis issues. Watts Links and Cross Bars manufactured as bolt on kits. MonacoWatts.com.
Recommended publications
  • Design and Analysis of Suspension System for an All Terrain Vehicle
    International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 164 ISSN 2229-5518 DESIGN AND ANALYSIS OF SUSPENSION SYSTEM FOR AN ALL TERRAIN VEHICLE Shijil P, Albin Vargheese, Aswin Devasia, Christin Joseph, Josin Jacob Abstract—In this paper our work was to study a. Study the static and dynamic parameters of the the static and dynamic parameter of the suspension system chassis. of an ATV by determining and analyzing the dynamics of b. Workout the parameters by analysis, design, and the vehicle when driving on an off road racetrack. Though, optimization of suspension system. there are many parameters which affect the performance of c. Study of existing suspension systems and the ATV, the scope of this paper work is limited to parameters affecting its performance. optimization, determination, design and analysis of d. Determination of design parameters for suspension systems and to integrate them into whole vehicle suspension system. systems for best results. The goals were to identify and optimize the parameters affecting the dynamic performance suspension systems Index terms—All terrain vehicle, suspension, caster angle, within limitations of time, equipment and data from camber angle, toe angle, roll centre manufacturer. In this paper we will also come across the following aspects IJSER negotiate a wider variety of terrain than most other vehicles. Although it is a street-legal vehicle in some countries, it is not legal within most states and provinces of Australia, the United States and 1.INTRODUCTION Canada and definitely not in India. By the current An All-Terrain Vehicle (ATV) is defined ANSI definition, it is intended for use by a single by the American National Standards Institute operator, although a change to include 2-seaters is (ANSI) as a vehicle that travels on low pressure under consideration.
    [Show full text]
  • A Review of Rear Axle Steering System Technology for Commercial Vehicles
    연구논문 Journal of Drive and Control, Vol.17 No.4 pp.152-159 Dec. 2020 ISSN 2671-7972(print) ISSN 2671-7980(online) http://dx.doi.org/10.7839/ksfc.2020.17.4.152 A Review of Rear Axle Steering System Technology for Commercial Vehicles 하룬 아흐마드 칸1․윤소남2*․정은아2․박정우2,3․유충목4․한성민4 Haroon Ahmad Khan1, So-Nam Yun2*, Eun-A Jeong2, Jeong-Woo Park2,3, Chung-Mok Yoo4 and Sung-Min Han4 Received: 02 Nov. 2020, Revised: 23 Nov. 2020, Accepted: 28 Nov. 2020 Key Words:Rear Axle Steering, Commercial Vehicles, Centering Cylinder, Tag Axle Steering, Maneuverability Abstract: This study reviews the rear or tag axle steering system’s concepts and technology applied to commercial vehicles. Most commercial vehicles are large in size with more than two axles. Maneuvering them around tight corners, narrow roads, and spaces is a difficult job if only the front axle is steerable. Furthermore, wear and tear in tires will increase as turn angle and number of axles are increased. This problem can be solved using rear axle steering technology that is being used in commercial vehicles nowadays. Rear axle steering system technology uses a cylinder mounted on one of rear axles called a steering cylinder. Cylinder control is the primary objective of the real axle steering system. There are two types of such steering mechanisms. One uses master and slave cylinder concept while the other concept is relatively new. It goes by the name of smart axle, self-steered axle, or smart steering axle driven independently from the front wheel steering. All these different types of steering mechanisms are discussed in this study with detailed description, advantages, disadvantages, and safety considerations.
    [Show full text]
  • Download Article
    addendum Setting a Hundred-Year Standard Remembering Panhard and Levassor, the company that invented the first manual transmission. Alex Cannella, Associate Editor 20th century French automobile to Bordeaux and back, before the hobby company Panhard and Levassor ultimately claimed his life in 1897 in a fatal were always unconventional. racing accident. Panhard, the other mind Sometimes, their deviations from the norm of the pair, would pass on, as well, a decade didn’t quite pan out. For example, one car, later. the Panhard and Levassor Dynamic, fea- The company’s innovations didn’t stop tured the driver seat in the middle of the car, after its two founders had passed, however. with passengers on either side, for a few years Most notably, they eventually developed the before the design was scrapped as awkward and “Panhard rod,” an early suspension rod that you impractical. can still find on some cars today. But while Panhard and Levassor’s innovations But here again, Panhard and Levassor the com- sometimes ended in a few evolutionary dead ends, pany continued to put out less well-known innova- some also resulted in a lot of the automotive industry’s first big tions for transmission systems. It was never anything huge or steps that are still standard practice today. flashy, but fundamental steps forward towards what we com- They were the first to start mounting the engine on the front monly recognize today as a modern transmission. Enclosed of the car. Before the turn of the 20th century, when automo- gearboxes in 1895. Quadrant changing four-speed transmis- biles were more still mostly motor buggies, the engine was often sions in 1903.
    [Show full text]
  • Meritor® Tire Inflation System (Mtis) by Psi™ Including Meritor Thermalert™
    MERITOR® TIRE INFLATION SYSTEM (MTIS) BY PSI™ INCLUDING MERITOR THERMALERT™ PB-9999 TABLE OF CONTENTS Control Box ............................................................................................................6 Exploded Views ......................................................................................................2 Guidelines for Specifying the Correct Kits for the Meritor Tire Infl ation System ......4 Hoses .....................................................................................................................8 Hubcaps ................................................................................................................11 Lights ....................................................................................................................6 Press Plug Kits ......................................................................................................9 Retrofi t Kit .............................................................................................................3 Through-Tees and Stators ......................................................................................8 Tools ......................................................................................................................10 Numerical Parts Listing .........................................................................................12 CONTROL BOX ASSEMBLY DUAL WHEEL END ASSEMBLY 2 U.S. 888-725-9355 Canada 800-387-3889 MERITOR TIRE INFLATION SYSTEM RETROFIT KIT Qty. Per Qty. Per Tandem Tandem
    [Show full text]
  • 1976 Technical Documentation Locomotive Truck Hunting M.Pdf
    TECHNICAL DOCUMENTATION LOCOMOTIVE TRUCK HUNTING MODEL V. K. Garg OHO G. C. Martin P. W. Hartmann J. G. Tolomei mnnnn irnational Government-Industry 04 - Locomotives ch Program on Track Train Dynamics R-219 TE C H N IC A L DOCUMENTATION rnn nnn LOCOMOTIVE TRUCK HUNTING MODEL V. K. Garg G. C. Martin P. W. Hartmann a a J. G. Tolomei dD 11 TT|[inr i3^1 i i H§ic§ An International Government-Industry Research Program on Track Train Dynamics Chairman L. A. Peterson J. L. Cann Director Vice President Office of Rail Safety Research Steering Operation and Maintenance Federal Railroad Administration Canadian National Railways G. E. Reed Vice Chairman Director Committee W. J. Harris, Jr. Railroad Sales Vice President AMCAR Division Research and Test Department ACF Industries Association of American Railroads D. V. Sartore or the E. F. Lind Chief Engineer Design Project Director-Phase I Burlington Northern, Inc. Track Train Dynamics Southern Pacific Transportation Co. P. S. Settle Tack Tain President M. D. Armstrong Railway Maintenance Corporation Chairman Transportation Development Agency W. W. Simpson Dynamics Canadian Ministry of Transport Vice President Engineering W. S. Autrey Southern Railway System Chief Engineer Atchison, Topeka & Santa Fe Railway Co. W. S. Smith Vice President and M. W. Beilis Director of Transportation Manager General Mills, Inc. Locomotive Engineering General Electric Company J. B. Stauffer Director M. Ephraim Transportation Test Center Chief Engineer Federal Railroad Administration Electro Motive Division General Motors Corporation R. D. Spence (Chairman) J. G. German President Vice President ConRail Engineering Missouri Pacific Co. L. S. Crane (Chairman) President and Chief W.
    [Show full text]
  • Specifiers & Installers Guide to TORSION BAR APPLICATIONS
    Specifiers & Installers Guide To TORSION BAR APPLICATIONS WELCOME Thank you for specifying Sauber Torsion Bars. By choosing us as your stability partner, you derive the following benefits: * Improved Stability * Stability is safety, and safety is our first concern. A Sauber Torsion Bar can eliminate unwanted counterweight, offering your users an extra safety margin. Because Sauber bars don't rigidize the chassis frame, they always provide a smooth, quiet ride. * Long Life * Premium bronze and galvanized components. Bushings guaranteed and replaced as/if needed for 10 years. 10 Year parts coverage when inspected at no greater than four month intervals. * Excellent Documentation * Our comprehensive applications charts, installation instructions and detailed drawings provide the vital information you and your installers need in an organized format. * Superior Support * Toll-free phone and fax service from anywhere in North America provides easy access to the resources of our organization through your personal company representative. * Lower Life Cycle Costs * Since it takes less time to mount our bar, its installed cost can actually be less than other alternatives. Sauber Torsion Bars are designed and built to last as long as your chassis. * Extensive Inventory * Our inventory power puts our bar on the floor just when you want it. Your production schedule can't wait on your suppliers, and with us as your partner, it won't. * More Choices * Underframe or overframe, nobody provides more installation options than we do. More choices mean a better
    [Show full text]
  • Road Map for the Future Making the Case for Full-Stability
    ROAD MAP FOR THE FUTURE MAKING THE CASE FOR FULL-STABILITY Bendix Commercial Vehicle Systems LLC 901 Cleveland Street • Elyria, Ohio 44035 1-800-247-2725 • www.bendix.com/abs6 road map for the future : making the case for full-stability TABLE OF CONTENTS 1 : Important Terms ............................................... 3-4 2 : Executive Summary ............................................. 5-7 3 : Understanding Stability Systems .................................. 8-12 4 : The Difference Between Roll-Only and Full-Stability Systems ...........13-23 5 : Stability for Straight Trucks/Vocational Vehicles ......................24-26 6 : Why Data Supports Full-Stability Systems ..........................27-30 7 : The Safety ROI of Stability Systems ................................31-33 8 : Recognizing the Limitations of Stability Systems ......................34-37 9 : Stability System Maintenance .....................................38-40 10 : Stability as the Foundation for Future Technologies ...................41-42 11 : Conclusion .................................................. 43-44 12 : Appendix A: Analysis of the “Large Truck Crash Causation Study” ..... 45-46 13 : About the Authors ................................................47 road map for the future : making the case for full-stability 1 : 1 2 IMPORtant teRMS Directional Instability Before delving into information about the The loss of the vehicle’s ability to follow the driver’s steering, technological differences acceleration or braking input. between commercial vehicle
    [Show full text]
  • Eaton® Repair Information
    ® Eaton October, 1991 Hydrostatic Transaxle Repair Information A 751, 851, 771, and 781 Transaxle 1 The following repair information applies to mance. Work in a clean area. After disassem- the Eaton 751, 851,771, and 781 series hydro- bly, wash all parts with clean solvent and blow static transaxles. the parts dry with air. Inspect all mating sur- faces. Replace any damaged parts that could cause internal leakage. Do not use grit paper, files or grinders on finished parts. Note: Whenever a transaxle is disassembled, our recommendation is to replace all seals. Lubricate the new seals with petroleum jelly before installation. Use only clean, recom- mended hydraulic fluid on the finished sur- faces at reassembly. Part Number, Date of Assembly, and Input Rotation Stamped on this Surface 6 The following tools are required for disas- Assembly Date of Part Number Input Rotation Build Code sembly and reassembly of the transaxle. (CW or CCW) • 3/8 in. Socket or End Wrench Customer • 1 in. Socket or End Wrench Part Number XXX-XXX XXX XXXXXX Factory ( if Required ) XXXXXX XX/XX/XX 11 Rebuild • Ratchet Wrench Code • Torque Wrench 300 lb-in [34 Nm] Original Build Factory Rebuild ( example - 010191 ) ( example - 01/01/91 11 ) • 5/32 Hex Wrench 01 01 91 01 01 91 11 • Small screwdriver (4 in [102 mm] to 6 in. Year Number of [150 mm] long) Day Year Times Rebuilt (2) • No. 5 or 7 Internal Retaining Ring Pliers Month Day Month • No. 4 or 5 External Retaining Ring Pliers • 6 in. [150 mm] or 8 In.
    [Show full text]
  • TJM 4X4 Performance Suspension Parts Brochure
    ›› › SUSPEN SUSPENSUSPENSSSIONIONION Suspension Information 2 | Suspension We started it Founded on mateship in 1973, TJM is the Aussie pioneer of 4WD equipment. We’re tried and proven Australia’s rugged, yet diverse landscape has provided the ideal testing ground. Whether your journey takes you on or off road, for work or play, TJM has the gear you can depend on. We’re tough, yet sophisticated Using the latest engineering and manufacturing technology, our products are exposed to stringent testing and thorough quality assurance procedures to guarantee our customers receive nothing but the best. Everybody wants a piece of us Our research and development team brings leading-edge and performance-driven products. We’re the experts not just on our home turf but also offshore, so it’s not surprising TJM’s Aussie innovations are exported around the globe. Suspension | 3 IF YOU’RE GOING BUSH, BOUNDING OVER A BUMPY BUILDING SITE OR HAULING A CARAVAN ACROSS THE COUNTRY, TJM HAS A SUSPENSION SYSTEM TO SUIT YOUR 4WD. If wheels were your car’s feet, then suspension would be the legs. Just as the strength, length and flexibility of your legs impact on the way in which you move and the way you connect to the ground, different types of suspension determine the functionality, safety and comfort of your vehicle on different terrain. Made up of several parts that work together like joints and bones, suspension affects absolutely every aspect of driving. TJM XGS GOLD SUSPENSION Given the importance of suspension, it’s surprising how frequently people place priority on installing bull bars, roof racks and other 4WD accessories without even considering their suspension needs.
    [Show full text]
  • MICHELIN® Truck Tire Reference Chart
    MICHELI N® Truck Tire Reference Chart January 2012 MICHELIN ® TRUCK TIRE REFERENCE CHART STEER / ALL-POSITION TIRES (3) XZA3 ®+ EVERTREAD ™ XZA ® (365/70R22.5) XZA2 ® ENERGY • Ultra-fuel-efficient tire (1) that delivers • Advanced Technology ™ compounding • Optimized channel design allows for long our longest mileage in line haul steer offers excellent fuel economy (1) tread life and minimized irregular wear applications • Engineered for irregular wear resistance • Low rolling resistance compounds for fuel • Dual Compound Tread delivers more • Over 7,000 trapezoidal micro sipes on economy (1) in highway service mileage without compromising ultra- groove edges help break water surface • Optimized for steer axle service fuel-efficiency and retreadability tension to promote traction on wet and • Directional tread with enhanced shoulder slippery road surfaces rib designed to deliver even wear to the end • Original shoulder groove design offers • 3-Retread Limited Warranty (2) enhanced resistance to uneven shoulder wear LH R O/O U LH R O/O U LH R O/O U 275/80R22.5 Tread Depth 365/70R22.5 Tread Depth 315/80R22.5 Tread Depth MICHELIN ® XZA3 ®+ EVERTREAD ™ 19 MICHELIN ® XZA ® 19 MICHELIN ® XZA2 ® ENERGY 16 Goodyear ® G395 LHS Fuel Max 18 Goodyear ® N/A Goodyear ® G291 18 Bridgestone ® R287A 16 Bridgestone ® N/A Bridgestone ® R294 19 XZA ®-1+ XZA ®1(3) XZE ® • Decoupling groove built for resistance to • Optimized for all-position heavy axle • Solid shoulders to help resist scrub irregular wear loads • Curb guards on sidewalls • Optimized for steer
    [Show full text]
  • Design of Automotive X-By-Wire Systems Cédric Wilwert, Nicolas Navet, Ye-Qiong Song, Françoise Simonot-Lion
    Design of automotive X-by-Wire systems Cédric Wilwert, Nicolas Navet, Ye-Qiong Song, Françoise Simonot-Lion To cite this version: Cédric Wilwert, Nicolas Navet, Ye-Qiong Song, Françoise Simonot-Lion. Design of automotive X-by- Wire systems. Richard Zurawski. The Industrial Communication Technology Handbook, CRC Press, 2005, 0849330777. inria-00000562 HAL Id: inria-00000562 https://hal.inria.fr/inria-00000562 Submitted on 27 Aug 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of automotive X-by-Wire systems Cédric Wilwert PSA Peugeot - Citroën 92000 La Garenne Colombe - France Fax: +33 3 83 58 17 01 Phone: +33 3 83 58 17 17 [email protected] Nicolas Navet LORIA UMR 7503 – INRIA Campus Scientifique - BP 239 - 54506 VANDOEUVRE-lès-NANCY CEDEX Fax: +33 3 83 58 17 01 Phone : +33 3 83 58 17 61 [email protected] Ye Qiong Song LORIA UMR 7503 – Université Henri Poincaré Nancy I Campus Scientifique - BP 239 - 54506 VANDOEUVRE-lès-NANCY CEDEX Fax: +33 3 83 58 17 01 Phone : +33 3 83 58 17 64 [email protected] Françoise Simonot-Lion LORIA UMR 7503 – Institut National Polytechnique de Lorraine Campus Scientifique - BP 239 - 54506 VANDOEUVRE-lès-NANCY CEDEX Fax: +33 3 83 27 83 19 Phone : +33 3 83 58 17 62 [email protected] CONTENTS Design of automotive X-by-Wire systems ......................................................................................................
    [Show full text]
  • Wl002 Installation Instructions
    WL002 INSTALLATION INSTRUCTIONS 1993-2002 Camaro, Firebird TOOLS REQUIRED: Hydraulic jack and stands or service lift Die grinder with cutoff wheel or similar cutting tool (See Step 12 below) Tin snips Wrenches and sockets: 7mm, 13mm, 15mm, 18mm, 21mm, 9/16”, ¾”, 15/16” INSTALLATION: 1. Lift vehicle and safely support with jack stands under the frame rails. 2. Position the jack under the center of the axle once the car is secure. 3. Using an 18mm and 21mm wrench, remove the factory panhard rod. 4. Locate the heat shield directly over the muffler. There are two small screws that connect the heat shield to the upper panhard rod support. Using a 7mm wrench or socket, remove these screws as shown in IMAGE 1. 5. Remove the upper panhard rod support bolt on the passenger side using an 18mm and 21mm wrench. Due to rearend/spring interference, you may need to lift or lower the rear end in order to get the bolt all the way out. (IMAGE 2) 6. Using a 15mm socket, remove the (3) bolts on the drivers’ side that connect the upper panhard rod support to the frame rail. Remove the upper panhard rod support. 7. Using the 7mm socket, remove the remaining 3 screws that retain the heat shield to the floor. Remove the heat shield by sliding out the rear. 8. Install the BMR Watts Link cross-member with the supplied spacers installed where the panhard rod and upper panhard rod support was originally bolted. See IMAGE 3). Use the factory mounting hardware to install the cross-member.
    [Show full text]