Steering and Stabilisation Set a Course for Optimum Reliability and Performance

Total Page:16

File Type:pdf, Size:1020Kb

Steering and Stabilisation Set a Course for Optimum Reliability and Performance Marine Steering and stabilisation Set a course for optimum reliability and performance 1 Systems that keep vessels safely on course and comfortable in all conditions Since pioneering electro-hydraulic steering gear nearly a century ago, we continue to develop new systems for vessels ranging from large tankers to super yachts. Customers benefit from the world leading hydrodynamics expertise and the design resources of the Rolls-Royce rudder, steering gear, stabilisation and propulsion specialists, who cooperate to address and handle challenging projects and deliver system solutions. This minimises technical risk as well as maximising vessel performance. move Contents: Steering gear page 4 Promas page 10 Rudders page 12 Stabilisers page 18 Customer support page 22 movemake the right Steering gear Rotary vane steering gear for smaller vessels The SR series is designed with integrated frequency controlled pumps. General description Rolls-Royce supplies a complete range of steering gear, suitable for selection, alarm panels and rudder angle indicators or just a portion all types and sizes of ships. The products are designed as complete of this. The system is also prepared for interface to VDR, ships main steering systems with the actuator, power pack, steering control, alarm system, autopilot, joystick and DP when requested. Due to a alarm and rudder angle indicating system in mind, and can wide range of demands, great care has been taken from material therefore be delivered with complete control systems, including selection through construction, in order to meet the strictest quality control panels with start/stop, non-follow-up and follow-up, mode demands. Key product benefits Typical applications: • Compact • Available with steering • Work boats • Low weight control and rudder angle • Fishing vessels • Easy installation indicators as one complete • Offshore supply vessels • Easy maintenance system • Chemical/product tankers • High positioning accuracy • Built-in rudder carrier • LPG tankers • No external moving parts • Polymer sealings internally • Smaller naval & coastguard vessels and auxiliaries • Up to 70º rudder angle for optimal tightness • Smaller cargo vessels • Simple and robust • Smaller passenger vessels components • Yachts 4 The Rolls-Royce series of rotary vane steering gears has been smaller machines). The naval series of rotary vane steering gear manufactured for more than 60 years, with more than 30 000 is designed to meet the highest standards for noise, shock and machines delivered. The principle of a rotary vane gives more vibration. For naval applications without Milspec requirements flexibility when choosing the design and types of rudder, thanks the SR & RV ranges offer reliability and maintainability at low cost to the rudder angles of up to 2 x 70º. for a wide range of applications. The rotary vane principle also ensures a constant torque The SR series of steering gear throughout the steering sequence, providing the gear with The SR series is suitable for small to medium-sized vessels. The maximum power output at all rudder angles. This makes steering gear is designed with integrated frequency controlled navigation through narrow straits or busy shipping channels pumps. The pump utilises a reversible hydraulic pump motor safer, because maximum torque and steering time can always be together with a frequency converter to reduce the power achieved, resulting in improved manoeuvrability and improved consumption and to change the speed and the direction of the control. Unique technical solutions ensure very low noise and pump. The design gives smooth starting and stopping of the vibration levels. The compact and simple design reduces weight steering gear, and enables a precise analogue control system. and the number of components, which in turn secures fast and The pump units are mounted directly on the rudder actuator, easy installation of the steering gear. The actuators are mounted which lessens the need for piping work on board a vessel. directly on the rudder stock, without requiring the use of keys Full frequency control means the pumps and motors are only or keyways, facilitating easier assembly and dismantling of the running when a steering command is given, this reduces the rudder stock. The rudder torque is transmitted by hydraulic amount of heat generated and leads to a cleaner hydraulic coupling or by hydraulic sleeve coupling/expansion rings (for the system, improving the lifetime of components. 1 2 3 1. Unique technical solutions minimise noise and vibration levels. 2. The pump units are mounted directly on the rudder actuator. 3. Red indicates pressurised oil. Green indicates return oil. Std. rudder Max. Max. Max. Weight Max. Max. stock working working mechanical approx. radial axial TYPE dia. (mm) pressure (bar) torque (kNm) rudder angle (deg) (kg) load (kN) load (kN) SR562L 120 54 16 2 x 61 400 175 104 SR562 160 133 40 2 x 61 400 175 104 SR622 200 125 70 2 x 71,5 620 400 200 SR642 240 125 110 2 x 72 920 600 250 SR662 280 125 170 2 x 72 1800 700 354 SR722 300 125 275 2 x 72 2750 855 370 SR723 320 125 412 2 x 44 2800 855 370 SR742 340 125 433 2 x 72 3700 1400 480 SR743 360 125 650 2 x 44 3750 1400 480 *All rights reserved. All data subject to change without prior notice. 5 Steering gear Rotary vane steering gear for larger vessels The RV and IRV series are suitable for medium-sized to large vessels. The RV series steering gear full turning speed on the rudder. The system ensures a very precise The Rolls-Royce RV series of steering gear has a proven service rudder positioning at small rudder angles during course keeping, record on all types of vessels. Today’s range is suitable for while the full flow ensures full manoeuvring capability when medium-sized to large ships, including large container vessels and needed. VLCCs. The weight is typically 50-60% of a RAM-type steering gear, with a much smaller space requirement. Furthermore, the design’s The IRV series steering gear dual, submerged pump power packs make installation even easier, IMO regulations require compliance with the principle of single as no expansion tank is needed. Installation is also simplified failure criteria for large tankers over 100,000 dwt. This require- because of the integrated storage tank and rudder carrier. The ment is met by the IRV series, which incorporates automatic modulated flow control modulates the oil flow to the actuator in isolation and separation of the actuator’s dual hydraulic system. order to give a soft start and low rudder speed for small rudder The actuator is equipped with a double sealing system, completely movements. The oil flow gradually increases to full flow, allowing separating the actuator in two individual pressure systems. Key product benefits Typical applications: • Modulated flow control • Chemical tankers • Bulkers • Pressure activated sealing system • Product tankers • Ro-Ro & Ro-pax vessels • Safe, reliable low pressure technology • Crude oil tankers • Cruise vessels • Compact design with high torque and low weight • LPG tankers • Larger naval vessels and • Easy installation and service • LNG tankers auxiliaries • Robust design • Container vessels 6 4-vane steering gear steering. During idling of the pump, the frequency is reduced to a This is a range of extremely compact rotary vane steering gear, minimum. The starting current is also reduced to a minimum with which is suitable for medium to large vessels including tankers over this system. 100,000 dwt. The 4-vane steering gear is a further development of Reduced emergency generator size the well proven range of steering gear with two and three vanes. The RV and IRV range also have the possibility to have one frequency The key advantages of this design are its compact size because controller connected to the emergency stand-by pump, in order of the four vanes and its light weight as well. The 4-vane steering to reduce the power consumption and the starting current on gear is available as the standard RV model as well as the IRV model, the emergency generator. This solution will reduce the power which satisfies all statutory requirements for tankers over 100,000 consumption and starting current to a minimum during an dwt. This range also incorporates the proven and unique modulated emergency operation. flow control valve. In-service solution Frequency-controlled solutions On the larger 4-vane steering gear an integrated lifting device Reduced power consumption has been included. This device allows access to the split seals and For our RV and IRV range, a system with frequency controllers for bearings on the top and bottom covers of the actuator without optimising speed of the electric motors enables us to take control the need to disconnect the rudderstock connection. This way, a full over the power consumption of the steering gear. The design gives overhaul of the steering gear can be performed without having to smooth starts and stops of the steering gear and enables a precise disconnect the rudder. 1 2 3 1. The 4-vane steering gear and powerpack. 2. Modulated flow control. 3. Access to all bearings and sealings. Max. Max. Max. Friction loss Max. mech. Weight Max. Max. rudder stock working working in rudder rudder approx. radial axial TYPE dia. (mm) pressure (bar) torque (kNm) carrier (kNm) angle (deg) kg load (kN) load (kN) RV450-2 360 80 430 49 2 x 71,5 3200 1400 500 RV550-2 370 80 568 53 2 x 71,5 3500 1400 500 RV650-3 390 80 644 56 2 x 46,5 3200 1400 500 RV700-2 410 80 677 71 2 x 71,5 5000 1800 700 RV850-3 420 80 853 61
Recommended publications
  • 2013 Owner's Manual
    O W NER ’ S M A N U A L WELCOME TO DAGGER EUROPE BE PART OF THE COMMUNITY You are in good company. Over the years Dagger From the mountains to the sea, Dagger paddlers has crafted a reputation for being at the cutting are relentless in the pursuit of adventure and play. edge of paddlesport, which is why so many of the Join in at www.daggereurope.com to share your worlds most passionate and well-known paddlers experiences, see what the team have been doing choose to use our boats. Like them, you’ll find and get the latest news. your Dagger kayak will provide years of adventure wherever you want to go, and maybe places you CONTENTS haven’t thought of yet. 4 Kayak Key Features: Recreational/Touring 5 Kayak Key Features: Whitewater Formed in the late 80’s, Dagger has spent over two decades innovating and developing to create 6 Outfitting classic designs that always deliver performance, 12 Storage & Transport comfort and value. This guide will help you get 13 Care & Maintenance the best from your new Dagger kayak and also Additional Equipment ensure it stays in good condition throughout your 14 paddling adventures. 15 Your Safety 16 Warranty Thank you for choosing Dagger kayaks. 17 Service & Support This owner’s manual and additional information is available at www.daggereurope.com KAYAK KEY FEATURES: RECREATIONAL / TOURING Rudder (some models) Stern Seat & seatback Large hatch Backband adjuster Security bar Cockpit Thighbraces Deck Deck rigging Small hatch Grab handle Compass Bow Skeg Rail (some models) Sidewall Skeg/rudder lanyard Hull Foot brace bolts Deck lines, bow and stern Chine FEATURES IN DETAIL BOW/NOSE: The front of the kayak.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0053441 A1 Sakamoto (43) Pub
    US 2011 0053441A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0053441 A1 Sakamoto (43) Pub. Date: Mar. 3, 2011 (54) TWIN-SKEGSHIP (52) U.S. Cl. .......................................................... 440/66 (76) Inventor: Toshinobu Sakamoto, Nagasaki (JP) (21) Appl. No.: 12/990,009 (57) ABSTRACT Provided is a twin-skeg ship that allows for a further improve (22) PCT Filed: Oct. 20, 2008 ment in propulsion performance (propulsion efficiency). A twin-skeg ship (10) having a pair of left and right skegs (3) on (86). PCT No.: PCT/UP2008/068987 the bottom (2) of a stern has reaction fins 5, each comprising a plurality of fins 5a extending radially from a bossing (6) S371 (c)(1), fixed to a stern frame (7) provided at a rear end of the skeg (3), (2), (4) Date: Nov. 12, 2010 or from a fin boss provided on the bossing (6), in a range O O where a flow immediately in front of a propeller (4) attached Publication Classification to the skeg (3) with a propeller shaft (4a) therebetween has a (51) Int. Cl. component in the same direction as a rotational direction of B63H I/28 (2006.01) the propeller (4). SKEG HULL SKEG CENTERLINE CENTERLINE CENTERLINE Patent Application Publication Mar. 3, 2011 Sheet 1 of 8 US 2011/0053441 A1 - O s as e rs CO - d - CD s to v ? ? CY se Patent Application Publication Mar. 3, 2011 Sheet 2 of 8 US 2011/0053441 A1 N LL 2. C9 d - Salt CMO H. 2 CD CN 2 -- CD E----- a caaaad m H t Lal CP : : Patent Application Publication Mar.
    [Show full text]
  • US Vintage Model Yacht Group Vintage Marblehead (VM) RC Sailing Rule
    JH/JYS August 2019 US Vintage Model Yacht Group Vintage Marblehead (VM) RC Sailing Rule These revised Vintage Marblehead Rating Rules of 2019 shall govern Vintage Marblehead activities from date of publication until revised by consensus or recommendation by Vintage Marblehead class owners. It is reasonable to expect that the class rules or plans may evolve with time to improve clarity, correct unforeseen problems, or embrace advancing R/C technology. It is the intent of the class that any potential changes not disqualify existing boats. All Vintage Marblehead model yachts participating in racing competition sponsored by US VMYG must comply with these class-rating rules. It is the responsibility of each skipper to prepare his boat in accordance with the Rules and Specifications referenced or included in this document. The intent of the US VMYG is to encourage participation and to simplify any certification or measurement processes as much as is consistent with fair racing. The rating rules for the Vintage M divisions are based on the Marblehead 50-800 Class rule adopted by the Model Yacht Racing Association of America (predecessor of the American Model Yachting Association) April 14, 1932 and corrected June 1, 1939. Subsequent editions were “corrected” to accommodate the evolving Marblehead 50-800 development class. For racing purposes, Vintage Marblehead fleets may be separated into “Traditional”, “High Flyer”, and “Classic M” divisions. The separation is based on design characteristics. In general: Early vintage design types (”Traditional”) are identified by practices such as skeg or keel-mounted rudders and relatively shallow draft; this is typical of design practices in the period roughly from 1930- 1945.
    [Show full text]
  • Skeg Pro Instruction.Indd
    Assembly and installation instruction Dated 17.5.2011 ITEM: KS-retractable plastic skeg Pro PAGE 1/10 Code: 520100 & 520101 520100 KS-retractable plastic skeg Pro, complete 520101 KS-retractable plastic skeg Pro, plain (without flange in box) Assembly and installation instruction Dated 17.5.2011 ITEM: KS-retractable plastic skeg Pro PAGE 2/10 Code: 520100 & 520101 PRODUCT CODE PRODUCT NAME ID 520110 KS Skeg blade (inc wire 3mm / 2,5 m) 1 520120 KS Skeg box Pro, with flange (material ABS), inc PA-tube 6/4 2 520121 KS Skeg box Pro, without flange (material ABS), inc PA-tube 6/4 2b 520125 Axle for Skeg box (female) 3 520125 Axle for Skeg box (male) 4 520131 KS Skeg control box (material: ABS) 5 520132 KS Skeg control rail 6 520133 KS skeg control knop 7 520134 KS Skeg control plug 8 473309 Selftapping screw (2,9 x 9,5mm) A4, DIN 7983 9 453412 Screw M4 x 12 mm A4, DIN 966 10 465140 Washer M4, A4, DIN 9021 11 461140 Nut M4, A4, DIN 934 12 490600 O-ring (4,47 x 1,78 mm) 13 PA-tube 6/4 mm (included) 2 10 12 11 8 13 9 7 Wire (Aisi 316) 4 3 D: 3 mm L: 2,5 m 6 (included) 9 1 9 8 5 Assembly and installation instruction Dated 17.5.2011 ITEM: KS-retractable plastic skeg Pro PAGE 3/10 Code: 520100 & 520101 EXPLODED VIEW Skeg control unit,basedimensions Skeg control Skeg box,basedimensions R 102,5 mm 32,3 mm 121,2 mm 3 mm 6,2 mm inside 6,2 mm 22 mm 6,2 mm SECTION C-C 22,9 mm Code: 520100&520101 ITEM: KS-retractableplasticskegPro Assembly andinstallationinstruction SCALE 1:2 25 mm C 34,9 mm 420mm 400mm C 9,6 mm 154 mm 130 mm PAGE 4/10 PAGE Dated 17.5.2011 14,9mm 25° 25 mm 4,5 mm Assembly and installation instruction Dated 17.5.2011 ITEM: KS-retractable plastic skeg Pro PAGE 5/10 Code: 520100 & 520101 Skeg box (with flange) installation The skeg box with flange is meant to be installed into a recess from outside and underneath into the kayak hull.
    [Show full text]
  • Convergent Evolution of Boats with Sails A
    www.nature.com/scientificreports OPEN Convergent Evolution of Boats with Sails A. Bejan1*, L. Ferber2 & S. Lorente3 This article unveils the geometric characteristics of boats with sails of many sizes, covering the range 102–105 kg. Data from one hundred boat models are collected and tabulated. The data show distinct trends of convergent evolution across the entire range of sizes, namely: (i) the proportionality between beam and draft, (ii) the proportionality between overall boat length and beam, and (iii) the proportionality between mast height and overall boat length. The review shows that the geometric aspect ratios (i)–(iii) are predictable from the physics of evolution toward architectures that ofer greater fow access through the medium. Nature impresses us with images, changes and tendencies that repeat themselves innumerable times even though “similar observations” are not identical to each other. In science, we recognize each ubiquitous tendency as a distinct phenomenon. Over the centuries, our predecessors have summarized each distinct phenomenon with its own law of physics, which then serves as a ‘frst principle’ in the edifce of science. A principle is a ‘frst principle’ when it cannot be deduced from other frst principles. Tis aspect of organization in science is illustrated by the evolution of thermodynamics to its current state1,2. For example, 150 years ago the transformation of potential energy into kinetic energy and the conservation of “caloric” were fused into one statement—the frst law of thermodynamics—which now serves as a frst-principle in physics. It was the same with another distinct tendency in nature: everything fows (by itself) from high to low.
    [Show full text]
  • The Collection
    2014 THE COLLECTION GREAT LAKES SHIPYARD Jensen Maritime Consultants is a full-service naval architecture and marine engineering firm that delivers innovative, comprehensive and high-value engineering solutions to the marine community. 1 THE COLLECTION................................................................................3 60 WORKBOAT.............................................................................5 65 Z-DRIVE TUG...........................................................................7 74 MULTI-PURPOSE TUG...........................................................9 86 Z-DRIVE TUG..........................................................................11 92 ASD TRACTOR TUG.............................................................13 94 Z-DRIVE TUG.........................................................................15 100 Z-DRIVE TUG........................................................................17 100 LNG TUG...............................................................................19 111 MULTI-PURPOSE TUG..........................................................21 150 LINEHAUL TUG...................................................................23 CONTACT US.......................................................................................25 Great Lakes Shipyard is a full-service shipyard for new vessel and barge construction, fabrication, maintenance, and repairs in a state-of-the-art facility that includes a 770-ton mobile Travelift and a 300-ton floating drydock. 2 JENSEN SERIES THE COLLECTION
    [Show full text]
  • Coast Guard, DHS § 164.33
    Coast Guard, DHS § 164.33 the United States unless no more than on a regular basis at least once every 12 hours before entering or getting un- three months. This drill must include derway, the following equipment has at a minimum the following: been tested: (1) Operation of the main steering (1) Primary and secondary steering gear from within the steering gear gear. The test procedure includes a vis- compartment. ual inspection of the steering gear and (2) Operation of the means of commu- its connecting linkage, and, where ap- nications between the navigating plicable, the operation of the following: bridge and the steering compartment. (i) Each remote steering gear control (3) Operation of the alternative power system. supply for the steering gear if the ves- (ii) Each steering position located on sel is so equipped. the navigating bridge. (92 Stat. 1471 (33 U.S.C. 1221 et seq.); 49 CFR (iii) The main steering gear from the 1.46(n)(4)) alternative power supply, if installed. (iv) Each rudder angle indicator in [CGD 77–183, 45 FR 18925, Mar. 24, 1980, as relation to the actual position of the amended by CGD 83–004, 49 FR 43466, Oct. 29, 1984] rudder. (v) Each remote steering gear control § 164.30 Charts, publications, and system power failure alarm. equipment: General. (vi) Each remote steering gear power No person may operate or cause the unit failure alarm. operation of a vessel unless the vessel (vii) The full movement of the rudder has the marine charts, publications, to the required capabilities of the and equipment as required by §§ 164.33 steering gear.
    [Show full text]
  • & Marine Engineering
    REFERENCE ROOM Naval Architecture & Marine Engineering ft* University of Michigan Ann Arbgr, M g109 THE UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING Department of Naval Architecture and Marine Engineering DESIGN CONSIDERATIONS AND THE RESISTANCE OF LARGE, TOWED, SEAGOING BARGES J. L. Moss Corning Townsend III Submitted to the SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS Under p. O. No. 360 September 15, 1967 In the last decade, -ocean-going unmanned barges have become an increasingly important segment of our merchant marine. These vessels, commonly over 400 feet long, and sometimes lifting in excess of 15,000 L.T. dead weight, are usually towed on a long hawser behind a tugboat. Because the barges are inherently directionally unstable, twin out- board skegs are attached to achieve good tracking. Model tests are conducted in order to determine towline resistance and the proper skeg position which renders the barge stable. Skegs, vertical appendages similar to rudders, are placed port and starboard on the rake. They create lift and drag, and move the center of lateral pressure aft, thus tending to stabilize a barge towed on a long line. At The University of Michigan many such model experiments have been conducted within the past several years. Since these tests have been carried out for various industrial con- cerns and on specific designs, systematic variations of parameters or other means of specifically relating the results have not been possible in most cases. Nevertheless, on the basis of the results of these largely unrelated tests, recom- mendations can be made regarding good design practice and some specific aspects can be demonstrated.
    [Show full text]
  • Building Instructions Be Followed Closely; a Measurement Form and Rulebook Is Supplied So That the Boat Can Be Checked During Construction
    CONTENTS FOREWORD 7 THE INTERNATIONAL MIRROR CLASS DINGHY KIT 9 KIT OPTIONS 10 ADHESIVES AND COATINGS 11 COATING AND FINISHES 11 PLANNING AND MANUAL LAYOUT 12 GENERAL NOTES 13 FIXING AGENTS 14 THE STITCH AND GLUE METHOD 14 HEALTH & SAFETY 14 BEFORE STARTING TO BUILD – Some points to remember 15 PRE CONDITIONING THE GUNWALES 16 CONSTRUCTING THE HULL 17 JOINING HULL PANELS 17 MARKING AND DRILLING HULL PANELS 17 Glue Block Layout Diagram 2 18 Glue Block Alignment 18 Marking the position of the stringers (9) 19 FIXING THE FLOOR BATTENS (4) 19 LACING THE BOTTOM - (Joined Panels 1 & 2) 20 FITTING and FIXING THE AFT TRANSOM (7) 20 FITTING AND FIXING THE FORE TRANSOM (8) 21 FIXING THE SIDE PANELS (5 & 6) 21 ALIGNING THE HULL 22 Aligning the hull… 22 Tightening the laces 23 FITTING STRINGERS (9) TO SIDE PANELS (5/6) 24 MAST STEP WEB - STOWAGE BULKHEAD ASSEMBLY (10 & 1OA, 10v) 24 PREPARATION OF BULKHEADS AND TRIAL FITTING 24 SEALING THE HULL SEAMS and FIXING THE BULKHEADS 25 Forward Bulkhead (11) 26 Stowage Bulkhead & Mast Step Web Assembly (10 & 10A) 26 Aft Bulkhead Unit (012) 26 Side Tank Sides Unit (013) 26 ASSEMBLE THE CENTREBOARD CASE UNIT (14) 27 FITTING THE CENTRECASE UNIT AND THWART 28 FITTING THE AFT DECK BEAM (15) AND SUPPORT (15i) 29 PREPARATIONS FOR FIXING DECKS 29 FITTING DECK PANELS AND FIXING BEAMS AND BATTENS 30 Fitting The Aft Deck 30 Assembly And Fitting Of The Foredeck (18) 30 Fixing Fore Deck Beams (20, 20a) 31 “FAIRING OFF” 31 FIXING THE DECKS (018, 022, 023) AND SHROUD BLOCKS (21) 31 Foredeck (018) 32 Aft deck (023) 32 Shroud
    [Show full text]
  • A Manual for Fishermen
    Appendices APPENDICES A. Weather conditions and sea state B. Important radio frequencies and the phonetic alphabet C. Glossary of nautical terms D. Main species caught on a horizontal longline in the Pacific E. Sample pre-departure checklist F. South Pacific Regional Longline Logsheet and instructions 115 Appendices APPENDIX A Weather conditions and sea state Beaufort wind scale Wind force Speed in knots Description 0 less than 1 calm 11 to 3 light air 24 to 6 light breeze 37 to 10 gentle breeze 411 to 16 moderate breeze 5 17 to 21 fresh breeze 6 22 to 27 strong breeze 7 28 to 33 near gale 8 34 to 40 gale 9 41 to 47 strong gale 10 48 to 55 storm 11 56 to 63 violent storm 12 64 and over hurricane When wind changes clockwise it is said to veer. When wind changes anticlockwise it is said to back. Sea state code Code figure Description Mean maximum height of wave in metres (and feet) 0 calm (glassy) 0 1 calm (rippled) 0 to 0.3 (0 to 1) 2 smooth (wavelets) 0.3 to 0.6 (1 to 2) 3 slight 0.6 to 1.2 (2 to 4) 4 moderate 1.2 to 2.4 (4 to 8) 5 rough 2.4 to 4.0 (8 to 13) 6 very rough 4.0 to 6.1 (13 to 20) 7 high 6.1 to 9.2 (20 to 30) 8 very high 9.2 to 13.8 (30 to 45) 9 phenomenal (might exist in centre over 13.8 (45) of hurricane) 117 Appendices APPENDIX B Important radio frequencies and the phonetic alphabet Radio frequencies SSB radiotelephone in kHz (simplex) VHF in mHz 1.
    [Show full text]
  • Native Watercraft
    ULTIMATE 12 OWNER’S MANUAL Understanding your Ultimate 12: . Hull Materials . Features Using Your Ultimate 12: . Initial Set Up . Removing and Re-installing the Seat . Transporting your Ultimate . Caring for your Ultimate . Storage Tips Basic Gear: . Paddle . PFD . Sprayskirt . Boat Cover . Safety Equipment . Personal Gear UNDERSTANDING YOUR ULTIMATE 12 Hull Materials Polyethylene Rotationally molded boats are engineered to have sturdy hulls with maximum impact and abrasion resistance. Polyethylene can endure extended exposure to both ultraviolet light and temperature variation, enabling boats to be stored outdoors. Elite Composite® Kayaks Beautiful and sleek, Native Watercraft elite Composite boats are crafted with state-of-the art materials and a unique manufacturing process which utilizes vacuum bagging techniques to eliminate all unnecessary non-structural weight. They are light, stiff and able to accommodate the weight of paddlers and recommended gear loads. Tegris® Boats made with this revolutionary material are handsome and lightweight, tough and resilient. They are produced with state-of-the-art techniques that meld layers of fabric without resin, to create an extremely light but strong hull. They will accommodate the weight of paddlers and recommended gear loads with ease, but are a joy when you‟re loading or portaging. FEATURES Tunnel Hull (patented) This signature tunnel hull is extraordinarily stable for being a single hull. It creates a boat-wide platform that minimizes rocking when you redistribute weight, and allows you to stand for long periods for scouting, poling or sight fishing, with confidence. With your feet positioned in a unique, lower position relative to your hips (in most kayaks, your toes are at the same level as your hips), you experience the most comfortable seating position available in today‟s kayaks.
    [Show full text]
  • Course Objectives Chapter 2 2. Hull Form and Geometry
    COURSE OBJECTIVES CHAPTER 2 2. HULL FORM AND GEOMETRY 1. Be familiar with ship classifications 2. Explain the difference between aerostatic, hydrostatic, and hydrodynamic support 3. Be familiar with the following types of marine vehicles: displacement ships, catamarans, planing vessels, hydrofoil, hovercraft, SWATH, and submarines 4. Learn Archimedes’ Principle in qualitative and mathematical form 5. Calculate problems using Archimedes’ Principle 6. Read, interpret, and relate the Body Plan, Half-Breadth Plan, and Sheer Plan and identify the lines for each plan 7. Relate the information in a ship's lines plan to a Table of Offsets 8. Be familiar with the following hull form terminology: a. After Perpendicular (AP), Forward Perpendiculars (FP), and midships, b. Length Between Perpendiculars (LPP or LBP) and Length Overall (LOA) c. Keel (K), Depth (D), Draft (T), Mean Draft (Tm), Freeboard and Beam (B) d. Flare, Tumble home and Camber e. Centerline, Baseline and Offset 9. Define and compare the relationship between “centroid” and “center of mass” 10. State the significance and physical location of the center of buoyancy (B) and center of flotation (F); locate these points using LCB, VCB, TCB, TCF, and LCF st 11. Use Simpson’s 1 Rule to calculate the following (given a Table of Offsets): a. Waterplane Area (Awp or WPA) b. Sectional Area (Asect) c. Submerged Volume (∇S) d. Longitudinal Center of Flotation (LCF) 12. Read and use a ship's Curves of Form to find hydrostatic properties and be knowledgeable about each of the properties on the Curves of Form 13. Calculate trim given Taft and Tfwd and understand its physical meaning i 2.1 Introduction to Ships and Naval Engineering Ships are the single most expensive product a nation produces for defense, commerce, research, or nearly any other function.
    [Show full text]