Abstract Bowen, Kristen Bennett
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WO 2018/009838 Al 11 January 2018 (11.01.2018) W !P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/009838 Al 11 January 2018 (11.01.2018) W !P O PCT (51) International Patent Classification: Declarations under Rule 4.17: C12N 5/075 (2010.01) — as to applicant's entitlement to apply for and be granted a (21) International Application Number: patent (Rule 4.1 7(H)) PCT/US2017/041 155 — as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(Hi)) (22) International Filing Date: 07 July 2017 (07.07.2017) Published: — with international search report (Art. 21(3)) (25) Filing Language: English — before the expiration of the time limit for amending the (26) Publication Langi English claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) (30) Priority Data: — with sequence listing part of description (Rule 5.2(a)) 62/359,416 07 July 2016 (07.07.2016) US (71) Applicant: RUBIUS THERAPEUTICS, INC. [US/US]; 620 Memorial Dr #100W, Cambridge, MA 02139 (US). (72) Inventors; and (71) Applicants: HARANDI, Omid [US/US]; 39 Rowena Road, Newton, MA 02459 (US). KHANWALKAR, Ur- jeet [IN/US]; 2 11 Elm Street, Apt. 3, Cambridge, MA 02139 (US). HARIHARAN, Sneha [IN/US]; 18 Hamilton Road, Apt. 407, Arlington, MA 02472 (US). (72) Inventors: KAHVEJIAN, Avak; 2 Beverly Road, Arling ton, MA 02474 (US). MATA-FINK, Jordi; 8 Windsor Rd #1, Somerville, MA 02144 (US).DEANS, Robert, J.; 1609 Ramsgate Court, Riverside, CA 92506 (US). -
Auxiliary Iron–Sulfur Cofactors in Radical SAM Enzymes☆
Biochimica et Biophysica Acta 1853 (2015) 1316–1334 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Review Auxiliary iron–sulfur cofactors in radical SAM enzymes☆ Nicholas D. Lanz a, Squire J. Booker a,b,⁎ a Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States b Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States article info abstract Article history: A vast number of enzymes are now known to belong to a superfamily known as radical SAM, which all contain a Received 19 September 2014 [4Fe–4S] cluster ligated by three cysteine residues. The remaining, unligated, iron ion of the cluster binds in Received in revised form 15 December 2014 contact with the α-amino and α-carboxylate groups of S-adenosyl-L-methionine (SAM). This binding mode Accepted 6 January 2015 facilitates inner-sphere electron transfer from the reduced form of the cluster into the sulfur atom of SAM, Available online 15 January 2015 resulting in a reductive cleavage of SAM to methionine and a 5′-deoxyadenosyl radical. The 5′-deoxyadenosyl Keywords: radical then abstracts a target substrate hydrogen atom, initiating a wide variety of radical-based transforma- – Radical SAM tions. A subset of radical SAM enzymes contains one or more additional iron sulfur clusters that are required Iron–sulfur cluster for the reactions they catalyze. However, outside of a subset of sulfur insertion reactions, very little is known S-adenosylmethionine about the roles of these additional clusters. This review will highlight the most recent advances in the identifica- Cofactor maturation tion and characterization of radical SAM enzymes that harbor auxiliary iron–sulfur clusters. -
Rhodococcus Jostii Strain 8
Functional characterisation of alkane-degrading monooxygenases in Rhodococcus jostii strain 8 Jindarat Ekprasert A thesis submitted to the School of Environmental Sciences in fulfilment of the requirements for the degree of Doctor of Philosophy September 2014 University of East Anglia Norwich, UK i Contents List of figures viii List of tables xiii Declaration xv Acknowledgements xvi Abbreviations xvii Abstract xxi Chapter 1 introduction 1 1.1. Significance of alkanes in the environment 2 1.1.1. Chemistry of alkanes 2 1.2. The Rhodococcus genus 3 1.2.1. Common characteristics of Rhodococcus spp. 3 1.2.2. Rhodococcus spp. are capable of degrading gaseous alkanes 4 1.2.3. Potential applications of Rhodococcus in biotechnology 5 1.3. Bacterial enzymes responsible for alkane degradation 6 1.3.1. Integral membrane, non-heme iron alkane hydroxylases (AlkB) 6 1.3.2. Soluble di-iron monooxygenases (SDIMO) 8 1.3.2.1. SDIMO classification 10 1.3.2.2. Molecular genetics of SDIMOs 13 1.3.2.3. Mutagenesis of soluble methane monooxygenase 13 1.3.3. Cytochrome P450 alkane hydroxylases 14 3.3.1. Class I P450 14 3.3.2. Class II P450 (CYP52) 15 3.3.3. Class II P450 (CYP2E, CYP4B) 15 1.3.4. Membrane bound copper-containing (and possibly iron-containing) monooxygenases 15 1.4. Alkane metabolisms in Rhodococcus spp. 16 1.4.1. Aerobic metabolism of C2-C4 gaseous alkanes in bacteria 16 1.4.1.1. Ethane (C2H6) metabolism 16 1.4.1.2. Propane (C3H8) metabolism 17 ii 1.4.1.3. -
KEGG Orthology-Based Annotation of the Predicted
Dunlap et al. BMC Genomics 2013, 14:509 http://www.biomedcentral.com/1471-2164/14/509 DATABASE Open Access KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome Walter C Dunlap1,2, Antonio Starcevic4, Damir Baranasic4, Janko Diminic4, Jurica Zucko4, Ranko Gacesa4, Madeleine JH van Oppen1, Daslav Hranueli4, John Cullum5 and Paul F Long2,3* Abstract Background: Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description: Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of -
Modelling of the Melissa Artificial Ecosystem
ESTEC/CONTRACT 8125/88/NL/‘FG PRF 141315 Modelling of the MELiSSA artificial ecosystem Toward a structured model of the nitrifying compartment - Description of the respiratory chain of nitrifying organisms - Development of assumptions for the reverse electron flow in the respiratory electron transport chain - Stoichiometric description of the nitrification - Determination of KL~ for oxygen transfer limitation TECHNICAL NOTE 23.2 L. Poughon Laboratoire de Genie Chimique Biologique 63177 AUBIERE Cedex, FRANCE April 1995 Technical note 23.2 Toward a structured model of the nitrifying compartment T.N. 23.2: Modelling of the MELiSSA artificial ecosystem TOWARD A STRUCl-URJZD MODEL OF THE NITRIFYING COMPARTMENT L. Poughon. Laboratoire de Genie Chimique Biologique 63177 AUBIERE Cedex. France. INTRODUCTION In the MELiSSA loop the nitrifying compartment has the same function than the nitrifying process in the terrestrial ecosystem (figure 1) which is to provide an edible N-source for plants or micro-organisms (as Spirulines in the case of the MELiSSA loop). The ammoniflcation processes from organic waste (as for example the human waste faeces and urea) are performed in the MELiSSA loop by the 2 first compartments (liquefying and anoxygenic phototrophs compartments). It must be noted that there are some structural differences between the MELiSSA N-loop and the terrestrial ecosystem: l- the MELiSSA loop represent a very simplified part of the N loop encountered on earth; 2- the denitrification process (N mineral -> N2) or the N2 removing (N2 -> N mineral) are not considered 3- the sole N - source is N03- for Spirulina, it is NlQ+ for phototrophs and it is organic N for the crew. -
Relating Metatranscriptomic Profiles to the Micropollutant
1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles. -
Comparison of Physiology and Genome-Wide Expression in Two Nitrosomonas Spp
Comparison of physiology and genome-wide expression in two Nitrosomonas spp. under batch cultivation By Mohammad Ghashghavi A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science In Microbiology and Biotechnology Department of Biological Sciences University of Alberta © Mohammad Ghashghavi, 2014 Abstract: Ammonia oxidizing bacteria (AOB) play a central role in the nitrogen cycle by oxidizing ammonia to nitrite. Nitrosomonas europaea ATCC 19718 has been the single most studied AOB that has contributed to our understanding of chemolithotrophic ammonia oxidation. As a closely related species, Nitrosomonas eutropha C91 has also been extensively studied. Both of these bacteria are involved in wastewater treatment systems and play a crucial part in major losses of ammonium-based fertilizers globally. Although comparative genome analysis studies have been done before, change in genome-wide expression between closely related organisms are scarce. In this study, we compared these two organisms through physiology and transcriptomic experiments during exponential and early stationary growth phase. We found that under batch cultivation, N. europaea produces more N2O while N. eutropha consumes more nitrite. From transcriptomic analysis, we also found that there are selections of motility genes that are highly expressed in N. eutropha during early stationary growth phase and such observation was completely absent in N. europaea. Lastly, principle homologous genes that have been well studied had different patterns of expression in these strains. This study not only gives us a better understanding regarding physiology and genome-wide expression of these two AOB, it also opens a wide array of opportunities to further our knowledge in understanding other closely related species with regards to their evolution, physiology and niche preference. -
Bacterial Degradation of Isoprene in the Terrestrial Environment Myriam
Bacterial Degradation of Isoprene in the Terrestrial Environment Myriam El Khawand A thesis submitted to the University of East Anglia in fulfillment of the requirements for the degree of Doctor of Philosophy School of Environmental Sciences November 2014 ©This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derive there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Abstract Isoprene is a climate active gas emitted from natural and anthropogenic sources in quantities equivalent to the global methane flux to the atmosphere. 90 % of the emitted isoprene is produced enzymatically in the chloroplast of terrestrial plants from dimethylallyl pyrophosphate via the methylerythritol pathway. The main role of isoprene emission by plants is to reduce the damage caused by heat stress through stabilizing cellular membranes. Isoprene emission from microbes, animals, and humans has also been reported, albeit less understood than isoprene emission from plants. Despite large emissions, isoprene is present at low concentrations in the atmosphere due to its rapid reactions with other atmospheric components, such as hydroxyl radicals. Isoprene can extend the lifetime of potent greenhouse gases, influence the tropospheric concentrations of ozone, and induce the formation of secondary organic aerosols. While substantial knowledge exists about isoprene production and atmospheric chemistry, our knowledge of isoprene sinks is limited. Soils consume isoprene at a high rate and contain numerous isoprene-utilizing bacteria. However, Rhodococcus sp. AD45 is the only terrestrial isoprene-degrading bacterium characterized in any detail. -
429 Chem. Listy 97, 363–520 (2003)
Chem. Listy 97, 363–520 (2003) Posters P117 APPLICATION OF DEGENERATE REFERENCES OLIGONUCLEOTIDE GENE SHUFFLING FOR CONSTRUCTION OF HYBRID 1. Janssen D. B., Pries F., Ploeg J., Kazemier B., Terpstra P., HALOALKANE DEHALOGENASE Witholt B.: J. Bacteriol. 171, 6791 (1989). 2. Nagata Y., Nariya T., Ohtomo R., Fukuda M., Yano K., ANDREA JESENSKÁa, YUJI NAGATAb, Takagi M.: J. Bacteriol. 175, 6403 (1993). and JIŘÍ DAMBORSKÝc 3. Kulakova A. N., Larkin M. J., Kulakov L. A.: Microbio- logy 143, 109 (1997). a National Centre for Biomolecular Research, Faculty of Science, 4. Jesenska A., Bartos M., Czernekova V., Rychlik I., Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic, Pavlik I., Damborsky V.: Appl. Environ. Microbiol. 68, e-mail: [email protected]; bDepartment of Environmen- 3724 (2002). tal Life Sciences, Graduate School of Life Sciences, Tohoku 5. Gibbs M. D., Nevalainen K. M., Bergquist P. L.: Gene University, Sendai 980-8577, Japan 271, 13 (2001). Keywords: haloalkane dehalogenase, in vitro recombination, P118 KINETICS AND SPECIFICITY construct, substrate specificity OF HALOALKANE DEHALOGENASE LinB FROM Sphingomonas paucimobilis UT26 Halogenated organic compounds constitute one of the ZBYNĚK PROKOPa, MARTA MONINCOVÁa, largest groups of environmental pollutants as a result of their MARTIN KLVAŇAa, RADKA CHALOUPKOVÁa, widespread use in industry and agriculture. Haloalkane de- DICK B. JANSSENb, YUJI NAGATAc, halogenases hydrolytically convert halogenated aliphatic and JIŘÍ DAMBORSKÝa compounds to corresponding alcohols. Enhancement of cata- lytic properties of environmentally important enzymes using aNational Centre for Biomolecular Research, Masaryk Univer- in vitro evolution techniques is one of the obvious goal of bio- sity, Kotlářská 2, 611 37 Brno, Czech Republic; bUniversity of technology. -
Changes in Soil Microbial Communities After Long-Term Warming Exposure" (2019)
University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses October 2019 CHANGES IN SOIL MICROBIAL COMMUNITIES AFTER LONG- TERM WARMING EXPOSURE William G. Rodríguez-Reillo University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Rodríguez-Reillo, William G., "CHANGES IN SOIL MICROBIAL COMMUNITIES AFTER LONG-TERM WARMING EXPOSURE" (2019). Doctoral Dissertations. 1757. https://doi.org/10.7275/15007293 https://scholarworks.umass.edu/dissertations_2/1757 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CHANGES IN SOIL MICROBIAL COMMUNITIES AFTER LONG-TERM WARMING EXPOSURE A Dissertation Presented by WILLIAM GABRIEL RODRÍGUEZ-REILLO Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY SEPTEMBER 2019 Organismic and Evolutionary Biology © Copyright by William Gabriel Rodríguez-Reillo 2019 All Rights Reserved CHANGES IN SOIL MICROBIAL COMMUNITIES AFTER LONG-TERM WARMING EXPOSURE A Dissertation Presented by WILLIAM GABRIEL RODRÍGUEZ-REILLO Approved as to style and content by: _________________________________________ Jeffrey L. Blanchard, Chair _________________________________________ Courtney Babbitt, Member _________________________________________ David Sela, Member _________________________________________ Kristina Stinson, Member ______________________________________ Paige Warren, Graduate Program Director Organismic and Evolutionary Biology DEDICATION To my parents, William Rodriguez Arce and Carmen L. Reillo Batista. A quienes aún en la distancia me mantuvieron en sus oraciones. -
Genetic Characterisaton of Rhodococcus Rhodochrous ATCC
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Genetic characterization of Rhodococcus rhodochrous ATCC BAA-870 with emphasis on nitrile hydrolysing enzymes n ow Joni Frederick A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Departmentty of of MolecularCape and T Cell Biology, Universitysi of Cape Town er UnivSupervisor: Professor B. T. Sewell Co-supervisor: Professor D. Brady February 2013 Keywords Nitrile hydrolysis Biocatalysis Rhodococcus rhodochrous ATCC BAA-870 Genome sequencing Nitrilase Nitrile hydratase n ow ty of Cape T si er Univ ii Keywords Abstract Rhodococcus rhodochrous ATCC BAA-870 (BAA-870) had previously been isolated on selective media for enrichment of nitrile hydrolysing bacteria. The organism was found to have a wide substrate range, with activity against aliphatics, aromatics, and aryl aliphatics, and enantioselectivity towards beta substituted nitriles and beta amino nitriles, compounds that have potential applications in the pharmaceutical industry. This makes R. rhodochrous ATCC BAA-870 potentially a versatile biocatalyst for the synthesis of a broad range of compounds with amide and carboxylic acid groups that can be derived from structurally related nitrile precursors. The selectivity of biocatalysts allows for high product yields and better atom economyn than non- selective chemical methods of performing this reaction, suchow as acid or base hydrolysis. -
Metabolic Functions of the Human Gut Microbiota: the Role of Metalloenzymes Cite This: DOI: 10.1039/C8np00074c Lauren J
Natural Product Reports View Article Online REVIEW View Journal Metabolic functions of the human gut microbiota: the role of metalloenzymes Cite this: DOI: 10.1039/c8np00074c Lauren J. Rajakovich and Emily P. Balskus * Covering: up to the end of 2017 The human body is composed of an equal number of human and microbial cells. While the microbial community inhabiting the human gastrointestinal tract plays an essential role in host health, these organisms have also been connected to various diseases. Yet, the gut microbial functions that modulate host biology are not well established. In this review, we describe metabolic functions of the human gut microbiota that involve metalloenzymes. These activities enable gut microbial colonization, mediate interactions with the host, and impact human health and disease. We highlight cases in which enzyme characterization has advanced our understanding of the gut microbiota and examples that illustrate the diverse ways in which Received 14th August 2018 Creative Commons Attribution 3.0 Unported Licence. metalloenzymes facilitate both essential and unique functions of this community. Finally, we analyze Human DOI: 10.1039/c8np00074c Microbiome Project sequencing datasets to assess the distribution of a prominent family of metalloenzymes rsc.li/npr in human-associated microbial communities, guiding future enzyme characterization efforts. 1 Introduction our gut from infancy and plays a critical role in the development 2 Commensal colonization of the human gut: tness and and maintenance of healthy human physiology. It aids in adaptation developing the innate and adaptive immune systems,1,2 2.1 Glycan sulfation provides nutrients and vitamins,3 and protects against path- 4 This article is licensed under a 2.2 Glycan fucosylation ogen invasion.