Geochemistry and Geology Mineralized and Barren Komatiites-Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

Geochemistry and Geology Mineralized and Barren Komatiites-Western Australia GEOCHEMISTRY AND GEOLOGY MINERALIZED AND BARREN KOMATI ITES - WESTERN AUSTRAL I A BY ROBERT D. McNEIL A the9is submitted to the Department of Geol~gyin fulfilment of the requirements for the degree of Master of Science. University of Tasmania .Hobart, Tasmani a 4u.l~~.I980 This thesis contains no material which has been accepted for the award of any other degree or diploma at any university, and that to the best of my knowledge the thesis contains no copy or paraphrase of material previously published or written by another person except when due reference is made in the text of the thesis or as acknowledged in the Acknowledgements. Robert D. McNeil July 1, 1980 7 ABSTRACT d: SUM^.^^ 7 Western Austral ian Archaean komatii tes which are associated with nickel sulphide mineralization can be separated into two groups - Mineralized or Barren, based on komatiite lithogeochemistry. Mineralized komatiites may host nickel sul phi de deposi ts whereas Barren komati i tes do not. Chemical relationships were determined from a data base of approximately 3300 samples of fresh komatiite ul~arnaficfrom four nickel provinces and other greenstone be1 ts not known to contain nickel sulphides. Mean chemical values for each group of komati i tes were : Category Ni P -N i CUP--- Cu A1 -Ca EL --Zn Cr -Mn -Fe COP- -Co - (21 Mineral ized 1027 2220 36 42 1.6 2.2 19.2 69 1617 1057 6.1 49 119 Barren 429 1530 29 39 2.2 2.8 16.4 76 2260 1128 7.0 32 119 Discriminant analysis , using the above thirteen chemical determinations as variables, for each of 2775 samples from forty localities, indicated that samples could be classified as either Mineralized or Barren with an expected accuracy of greater than 80 percent. No single element or chemical deter-min- ation is definftive, but collectively, Cr, Ni, Zn, Cu, Nip,- Mg, Fe and Co can distinguish between the two groups of ul tramafics. Critical elements are Cr, Ni and Nip,- assuming that values of Zn, Cu, Mg and Fe approximate the mean value for all West Austral ian komatiites. The Ni to Cr ratio is always greater than unity (1) in Mineralized komatiites and the Ni to Nip- ratio is always less than 3.5. Sulphur is not a diagnostic element. NOTES : 1. -P indicates a partial or sulphide analysis. 2. Al, Ca, Mg and Fe results are expressed in percentages; all others in parts per mill ion. (ii) Increasing Ni/Cr ratios and decreasing Ni/NiP- ratios within a komatiite can be regarded as indicative of increasing nickel sulphide potential. Mineralized komatiites contain less Cr within the silicate lattice structure and less chromite than Barren komatiites. However, the more important relationship appears to be the lesser amount of Cr attached to the silicate mineral lattice. Correlation analysis showed that: 1. most correlations are much stronger in Barren than in Mineralized ultramaf ics; 2. the chalcophile elements, Cu, Ni, Co and Fe (constituents of nickel sulphide deposits), show moderate to strong correlations with the rock forming elements, Mg, Mn, Ca, A1 in Barren ultramaf ics, but only weak or no correlation in the Mineralized ultramafics; 3. copper has moderate positive correlation with Fe, Mn, Ca, A1 and negative correlation with Mg in Barren ultramafics but shows no correlation with these same elements in Mineralized ultramaf ics. These correlation differences suggest that in Barren komatiites Ni, Cu, Co and Fe are contained in the silicate mineral lattice whereas in Mineralized komatiites they are presently partly as a separate sulphide fraction. In addition they may also suggest that these sulphides were added or removed from Mineralized komatiites after the formation of the komatiite magma, probably by concentration and removal in an' immissible sulphide-oxide melt. -. '. Komatiites can be divided into two separate suites called volcanic and intrusive. Volcanic suites such as those at Kambalda and Windarra South may contain many individual komatiite flows. The basal section of a komatiite volcanic pile consists of a small number of thick units which may contain sulphide mineralization whereas the central and upper parts of the pile consists of multiple -thin units. Both thick and -thin units consist of an olivine cumulate derived lower part overlain by a silicate liquid derived upper part. In thick units the olivine cumulate section is dominant whereas in -thin units the (iii) silicate liquid section is dominant. Spinifex texture is characteristic of 4' ., unmetamorphosed sequences. ufl &)++ CI 0 In metamorphosed sequences such as Windarra South it is not possible to identify individual komati i tes using mineralogical or textural criteria but it can be accomplished using chemical data. Intrusive suite komati i te sequences such as Forrestania or Perseverance usually consist of a small number of high Mg, homogeneous peridoti tes and/or dunites. Equigranular, equant olivine textures are characteristic. These komatiites are often continuous over strike lengths of the order of tens of kilometers and contain relatively 1i ttle internal chemical variation. Volcanic komatiites such as those at Windarra South and Kambalda are considered to be ul tramafic lavas. Chemical differences between volcanic and intrusive sequences have been defined. Typical chemical values for the cumulate section of a volcanic komatiite and for intrusive komatiites, both with moderate to high mineral izati on coefficients are: - Classification Nip- Ni & - - @ CUP--- Cu A1 Zn Cr Mn COP- Vol can i c Komati i tes 1000 2100 30 - 90 1-2 17-24 60 1300 1000 5.5 55 120 Intrusive Komati i tes 1200 2500 5 - 60 0.5 20-26 60 1000 900 6 60 125 In general, if NiP or Ni are less than 500 and 1800 ppm respectively, or Cr greater than 2100 ppm, a komatiite can be regarded as Barren. It has been possible to define sections of greenstone belts as prospective for nickel sulfides and other parts as unprospective. For example, the Forrestania section of the Forrestania-Southern Cross greenstone belt has a different chemical signature to the Southern Cross section. The latter section is unlikely to contain economic nickel sulphide accumulations. (P v) ACKNOWLEDGEMENTS The writer acknowledges the support of the Tenneco Australia Inc. - Minops Pty. Ltd. Joint Venture and Union Oi 1 Development Corporation. Numerous companies and i ndi vi dual s a1 1 owed the wri ter to coll ect sampl es , most notably the Tenneco-Minops Joint Venture, Poseiden Ltd. and Amax Exploration (Australia) Pty. Ltd. Most of the geoloqic maps used for location purposes or for geological descriptions of specific areas are based on fie1d mapping by other geologists. The names of many of these geologists are unknown but M. Lennox, J. Noakes and M. Woodhouse, all formerly of Tenneco Australia Inc. deserve specific acknowledgement. However, a1 1 solid geology interpretive maps and sections presented here are the responsibility of and have been compiled by the writer. The writer especially wishes to thank the above three geologists for their assistance and for many stimulating discussions. Thanks are also due to E.A. Rugg formerly of Tenneco Australia Inc. and E.H. Lindsey of Union Oil Co. of Cal ifornTa for their support throughout much of the study. W. R. Guthrie, also formerly of Tenneco Australia Inc. , was responsible for most of the analytical procedures and results. The description of analytical procedures are based on personal communications and notes from Guthrie. P. Walker and N. Campbell deserve thanks for explaining the statistical procedures to the writer. The description of Mulvar in Appendix E is based on unpublished notes by J. Keays. Finally I express my sincere thanks to Pamela Strauss for the final typing of this manuscri'pt. (4 CONTENTS -PAGE ABSTRACT ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES (xiii) CHAPTER I - INTRODUCTION 1.1 Format of Thesis 1.2 Data Base 1.3 Analytical Procedures CHAPTER 2 - GEOLOGICAL ENVIRONMENT 2.1 Topography and Weathering 2.2 Greenstone Belts 2.3 Komat ii tes 2.4 Metamorphism and Alteration 2.5 Geological Subdivision of the Yilgarn Block 2.6 Nickel Provinces CHAPTER 3 - MINERALIZED AND BARREN KOMATIITES 3.1 Mean Geochemical Results for each Locality 3.2 Discriminant Analysis 3.2.1 First and second stage analyses 3.2.2 Third stage analyses 3.3 Principal Component Analysis 3.4 Correlation Analysis 3.5 Relative Importance of Each Variable CHAPTER 4 - CHEMICAL CHARACTERISTICS OF VOLCANIC AND INTRUSIVE KOMATI ITES 4.1 Volcanic Komatiite Suite - 4.1.1 Kambalda 4.1.2 Windarra South 4.1.3 Trough Wells 4.1.4 Eureka Greenstone Belt 4.1.5 Red Well - 4.1.6 Airport - Yilmia 4.2 Intrusive Komatiite Suite 4.2.1 Queen Victori a Rocks 4.2.2 Forrestania 4.2.3 Bu 1 lf inch 4.2.4 Mistake Creek CONTENTS -PAGE CHAPTER 5 - EVALUATION OF WONGANOO-BANDJAWARN GREENSTONE BELT 5.1 Geological Setting 5.2 Evaluation of individual areas within the greenstone belt 5.2.1 Dingo Range West 5.2.1.1 Geology 5.2.1.2 Komatiite Sequence 5.2.1.3 Geochemistry 5.2.2 Devines 5.2.3 Dingo Range East and Lalor North 5.2.4 Mt. Step and Collin Well 5.3 Discussion CHAPTER 6 - COMPARISON OF FORRESTANIA NICKEL PROVINCE WITH THE CONTIGUOUS SOUTHERN CROSS GREENSTONE BELT 6.1 Forrestania Nickel Province 6.2 Southern Cross Greenstone Belt 6.2.1 Marvel Lock A 6.2.2 Trough Wells 6.2.3 Southern Cross Drill Holes 6.2.4 Marvel Lock B 6.2.5 Marvel Lock C 6.2.6 Ennuin 6.2.7 Bullfinch 6.3 Discussion CHAPTER 7 - APPLICATION OF GEOCHEMICAL CRITERIA TO NEW AREAS AND SAMPLE GROUPS WITH HIGH DEGREE OF MISCLASSIFICATION 7.1 Application of geochemical criteria to new areas 7.1.1 Area B 7.1.2 Area C 7.2 Barren groups with high percentage of samples misclassified 7.2.1 AreaA 7.2.1 Yerilla 7.2.3 Heather Hill CHAPTER 8 - DISCUSSION AND CONCLUSIONS 8.1 Mean Geochemical Values 8.2 Mineralized and Barren Komatiite Characteristics 8.2.1 Volcanic Suite 8.2.2 Intrusive Suite 8.2.3 Application of Mineralized - Barren Criteria 8.3 Chemical Gradients 8.4 Regional and Stratigraphic Chemical Differences 8.5 Comments cn Individual Areas 8.6 Significance of Sulphur 8.7 Genetic Aspects (vii ) CONTENTS -PAGE REFERENCES APPENDIX A - GEOLOGY AND GEOCHEMISTRY OF KALGOORLIE-NORSEMAN NICKEL PROVINCE A.l Geological Setting A.l.l Stratigraphy A.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Gaspéite-Magnesite Solid Solutions and Their Significance
    78 Advances in Regolith GASPÉITE-MAGNESITE SOLID SOLUTIONS AND THEIR SIGNIFICANCE Meagan E. Clissold, Peter Leverett & Peter A. Williams School of Science, Food and Horticulture, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797 It is a surprising fact that, despite the increasing number of secondary minerals of Ni(II) recognized from oxidized base metal deposits (Anthony et al. 2003), the supergene chemistry responsible for their formation remains poorly understood. An understanding of this chemistry would be desirable in view of its importance with respect to geochemical exploration for the element, its behaviour in the regolith and the potential development of commercially exploitable secondary nickel resources. Of the secondary nickel minerals known, gaspéite, NiCO3, is perhaps the most common and has been observed in a number of Western Australian deposits. Notable among these is the 132 pit at Widgiemooltha, near Kambalda, WA (Nickel et al.1994). The supergene profile of the 132 pit consists of 5 zones: oxide, carbonate, violarite-pyrite, transition and primary zone. The carbonate zone is 3-12 m below surface and is characterized by the occurrence of a number of flat-lying to sub-horizontal veins of gaspéite that cut across altered wall rock comprising tremolite and goethite. These veins extend from what was a large sulfide body across the matrix layer. Single gaspéite veins have a size of 5 x 5 x 0.05 m on average and may occur in masses of up to 10 x 10 x 1 m; they are typically massive to either granular or fibrous. From the lower part of the carbonate zone upwards there is a progressive decrease in the amount of gaspéite and other carbonate minerals, and their respective nickel contents.
    [Show full text]
  • Violarite Fe2+Ni S4
    2+ 3+ Violarite Fe Ni2 S4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. As nodules up to 0.5 cm and massive. Physical Properties: Cleavage: Perfect on {001}. Tenacity: Brittle. Hardness = 4.5–5.5 VHN = 455–493 (100 g load). D(meas.) = n.d. D(calc.) = 4.79 Optical Properties: Opaque. Color: Violet-gray; distinctly violet in reflected light. Luster: Metallic. R: (400) 39.0, (420) 39.6, (440) 40.2, (460) 40.6, (480) 41.0, (500) 41.4, (520) 41.9, (540) 42.5, (560) 43.1, (580) 43.8, (600) 44.3, (620) 44.8, (640) 45.4, (660) 45.8, (680) 46.2, (700) 46.6 Cell Data: Space Group: Fd3m. a = 9.51 Z = 8 X-ray Powder Pattern: Vermilion mine, Sudbury, Canada. 2.85 (100), 1.674 (80), 1.820 (60), 2.36 (50), 1.059 (50), 1.183 (40), 1.115 (40) Chemistry: (1) (2) (3) Fe 17.01 19.33 18.52 Ni 38.68 33.94 38.94 Co 1.05 2.50 Cu 1.12 1.05 S 41.68 42.17 42.54 insol. 0.40 1.31 Total 99.94 100.30 100.00 (1) Vermilion mine, Sudbury, Canada; contains trace chalcopyrite. (2) Friday mine, Julian, California, USA; contains trace chalcopyrite. (3) FeNi2S4. Mineral Group: Linnaeite group. Occurrence: Of hydrothermal origin, with other sulfides. Association: Pyrrhotite, millerite, chalcopyrite, pentlandite. Distribution: In the USA, from the Friday mine, Julian, San Diego Co., California; the Key West mine, Clark Co., Nevada; the Copper King mine, Gold Hill district, Boulder Co., Colorado; the Lick Fork deposit, Floyd Co., Virginia; and the Gap Nickel mine, Lancaster Co., Pennsylvania.
    [Show full text]
  • Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
    Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINERAIOGIST, VOL.51 AUGUST' 1966 TABLE 3 These concentrationranges were arbitrarily selected' Ag Antimonpearceite Empressite Novakite Aramayoite Fizelyite Owyheeite Argentojarosite Jalpaite Pavonite Arsenopolybasite Marrite Ramdohrite Benjaminite Moschellandsbergite see also Unnamed Minerals 30-32 AI Abukumalite Calcium ferri-phosphate Ferrocarpholite Ajoite Carbonate-cyanotrichite Fersmite Akaganeite Chalcoalumite Fraipontite Aluminocopiapite Chukhrovite Galarite Alumohydrocalcite Clinoptilolite Garronite Alvanite Coeruleolactite Glaucokerinite Aminoffite Cofrnite Goldmanite Anthoinite Combeite Gordonite Arandisite Corrensite Giitzenite Armenite Crandallite Grovesite Ashcroftine Creedite Guildite Ba:ralsite Cryptomelane Gutsevichite Barbertonite Cymrite Harkerite Basaluminite Cyrilovite Ilibonite Bayerite Davisonite Hidalgoite Bearsite Deerite H6gbomite Beidellite Delhayelite Hydrobasaluminite Beryllite Dickite Hydrocalumite Bialite Doloresite flydrogrossular Bikitaite Eardleyite Hydroscarbroite Boehmite Elpasolite Hydrougrandite Blggildite Endellite Indialite Bolivarite Englishite Iron cordierite Brammallite Ephesite Jarlite Brazilianire Erionite Johachidolite Brownmillerite Falkenstenite Juanite Buddingtonite Faustite Jusite Cadwaladerite Ferrazite Kalsilite Cafetite Ferrierite Karnasurtite 1336 GROUPSBY E.LEM\:,NTS 1337 Karpinskyite Orlite Stenonite Katoptrite Orthochamosite Sudoite Kehoeite Osarizawaite Sursassite Kennedyite Osumilite Swedenborgite Kimzeyite Overite Taaffeite Kingite Painite Tacharanite Knipovichite
    [Show full text]
  • Primary Minerals of the Jáchymov Ore District
    Journal of the Czech Geological Society 48/34(2003) 19 Primary minerals of the Jáchymov ore district Primární minerály jáchymovského rudního revíru (237 figs, 160 tabs) PETR ONDRU1 FRANTIEK VESELOVSKÝ1 ANANDA GABAOVÁ1 JAN HLOUEK2 VLADIMÍR REIN3 IVAN VAVØÍN1 ROMAN SKÁLA1 JIØÍ SEJKORA4 MILAN DRÁBEK1 1 Czech Geological Survey, Klárov 3, CZ-118 21 Prague 1 2 U Roháèových kasáren 24, CZ-100 00 Prague 10 3 Institute of Rock Structure and Mechanics, V Holeovièkách 41, CZ-182 09, Prague 8 4 National Museum, Václavské námìstí 68, CZ-115 79, Prague 1 One hundred and seventeen primary mineral species are described and/or referenced. Approximately seventy primary minerals were known from the district before the present study. All known reliable data on the individual minerals from Jáchymov are presented. New and more complete X-ray powder diffraction data for argentopyrite, sternbergite, and an unusual (Co,Fe)-rammelsbergite are presented. The follow- ing chapters describe some unknown minerals, erroneously quoted minerals and imperfectly identified minerals. The present work increases the number of all identified, described and/or referenced minerals in the Jáchymov ore district to 384. Key words: primary minerals, XRD, microprobe, unit-cell parameters, Jáchymov. History of mineralogical research of the Jáchymov Chemical analyses ore district Polished sections were first studied under the micro- A systematic study of Jáchymov minerals commenced scope for the identification of minerals and definition early after World War II, during the period of 19471950. of their relations. Suitable sections were selected for This work was aimed at supporting uranium exploitation. electron microprobe (EMP) study and analyses, and in- However, due to the general political situation and the teresting domains were marked.
    [Show full text]
  • In Situ FTIR Study of CO2 Reduction on Inorganic Analogues of Carbon Monoxide Dehydrogenase† Cite This: Chem
    ChemComm View Article Online COMMUNICATION View Journal | View Issue In situ FTIR study of CO2 reduction on inorganic analogues of carbon monoxide dehydrogenase† Cite this: Chem. Commun., 2021, 57, 3267 Ji-Eun Lee, a Akira Yamaguchi, ab Hideshi Ooka, a Tomohiro Kazami,b Received 6th November 2020, Masahiro Miyauchi, b Norio Kitadai cd and Ryuhei Nakamura *ac Accepted 4th January 2021 DOI: 10.1039/d0cc07318k rsc.li/chemcomm The CO2-to-CO reduction by carbon monoxide dehydrogenase capture and utilization compared to more complex pathways, (CODH) with a [NiFe4S4] cluster is considered to be the oldest such as the Calvin cycle, which is the most widespread carbon pathway of biological carbon fixation and therefore may have been fixation pathway in the biosphere today. involved in the origin of life. Although previous studies have Under anaerobic conditions, carbon fixation in the W–L Creative Commons Attribution-NonCommercial 3.0 Unported Licence. investigated CO2 reduction by Fe and Ni sulfides to identify the pathway is initiated by the reduction of CO2 to CO by carbon prebiotic origin of the [NiFe4S4] cluster, the reaction mechanism monoxide dehydrogenase (CODH), which utilizes a highly conserved 3 remains largely elusive. Herein, we applied in situ electrochemical [NiFe4S4] cluster as the catalytic site (Scheme 1a). The generated CO ATR-FTIR spectroscopy to probe the reaction intermediates of can be combined with a methyl group (–CH3)toformathioester, greigite (Fe3S4) and violarite (FeNi2S4). Intermediate species assign- acetyl-CoA, which is a central metabolite of biological carbon 2,4 able to surface-bound CO2 and formyl groups were found to be metabolism (Scheme 1b).
    [Show full text]
  • MAGMATIC SULFIDE DEPOSITS (MODELS 1, 2B, 5A, 5B, 6A, 6B, and 7A; Page, 1986A-G)
    MAGMATIC SULFIDE DEPOSITS (MODELS 1, 2b, 5a, 5b, 6a, 6b, and 7a; Page, 1986a-g) by Michael P. Foose, Michael L. Zientek, and Douglas P. Klein SUMMARY OF RELEVANT GEOLOGIC, GEOENVIRONMENTAL, AND GEOPHYSICAL INFORMATION Deposit geology Magmatic sulfide deposits are sulfide mineral concentrations in mafic and ultramafic rocks derived from immiscible sulfide liquids. A number of schemes exist for subdividing these deposits. Most are based on the tectonic setting and petrologic characteristics of the mafic and ultramafic rocks (Page and others, 1982; Naldrett, 1989), or on the spatial association of mineralized rock with enclosing ultramafic and mafic host rocks (stratabound, discordant, marginal, and other; Hulbert and others, 1988). Page (1986a-g) presented discussions of several different subtypes based, in part, on both these approaches (Models 1, 2b, 5a, 5b, 6a, 6b, and 7a). However, these deposits are similar enough that they can be treated as a group with regard to their geoenvironmental manifestations. The similarity of these deposits result, in part, from similar genesis. Exsolution of immiscible sulfide liquids from mafic-to-ultramafic magmas is the fundamental process that forms magmatic sulfide deposits. Once formed, droplets of immiscible sulfide liquid settle through less dense silicate magma. The sulfide liquid acts as a "collector" for cobalt, copper, nickel, and platinum-group elements (PGE) because these elements are preferentially concentrated in sulfide liquids at levels 10 to 100,000 times those in silicate liquids. To a lesser degree, iron is also preferentially partitioned into the sulfide liquid and, because of its greater abundance, most immiscible sulfide liquid is iron-rich. The combination of physically concentrating dense sulfide liquid and chemically concentrating elements in the sulfide liquid is responsible for forming most economically minable, magmatic-sulfide deposits.
    [Show full text]
  • Transformation Study of Pentlandite/Pyrrhotite to Violarite
    252 Regolith 2005 – Ten Years of CRC LEME THE TRANSFORMATION OF PENTLANDITE TO VIOLARITE UNDER MILD HYDROTHERMAL CONDITIONS: A DISSOLUTION- REPRECIPITATION REACTION Allan Pring1,2, Christophe Tenailleau,1 Barbara Etschmann1, Joel Brugger1,3 & Ben Grguric4 1Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, SA, 5000 2School of Earth & Environmental Science, University of Adelaide, SA, 5005 2CRC LEME, School of Earth & Environmental Science, University of Adelaide, SA, 5005 4Minerals Exploration, BHP Billiton Ltd., PO Box 91, Belmont, WA, 6984 INTRODUCTION Violarite, FeNi2S4, occurs abundantly in the supergene alteration zones of many massive and disseminated Ni sulfide deposits, where it replaces primary nickel sulfide minerals such as pentlandite (Nickel 1973, Misra & Fleet 1974). The nickel deposits of Western Australia’s Yilgarn Craton have deep weathering profiles and supergene violarite constitutes a considerable proportion of the ore in some of these deposits. Thus, violarite is probably the most economically important member of the thiospinel mineral group. Violarite can also form as a primary phase by exsolution during the cooling of pentlandite ((Fe,Ni)9S8) (Grguric 2002). Understanding the thermodynamics and kinetics of the formation of violarite in the weathering profile is important for understanding alteration patterns in and around nickel deposits and has significant implications for ore processing. Supergene violarite is generally very fine-grained and relatively porous and it has a poor response in the floatation systems used to treat many massive sulfide ores. On the other hand, a proportion of violarite in the nickel concentrate facilitates smelting, as the burning of violarite is a highly exothermic reaction (Dunn & Howes 1996).
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]
  • Structure of GIS Databases
    Tasmanian Geological Survey TASMANIA Record 1995/06 DEVELOPMENT AND RESOURCES Structure of GIS databases by M. P. McClenaghan, R. S. Bottrill and K. G. Bird CONTENTS INTRODUCTION ………………………………………………………………… 3 MINING TENEMENTS DATABASE………………………………………………… 3 Current Exploration Licence data …………………………………………… 3 Current Mining Leases ……………………………………………………… 3 MIRLOCH MINERAL DEPOSITS DATABASE ……………………………………… 4 Introduction ………………………………………………………………… 4 MIRLOCH data table ………………………………………………………… 4 DORIS DRILL HOLE DATABASE ………………………………………………… 6 Introduction ………………………………………………………………… 6 DORIS data table …………………………………………………………… 6 ROCKCHEM WHOLE-ROCK AND MINERAL CHEMISTRY DATABASE …………… 7 Introduction ………………………………………………………………… 7 SAMPLE data table ………………………………………………………… 7 MAJOR data table …………………………………………………………… 8 TRACE data table …………………………………………………………… 9 REE data table ……………………………………………………………… 10 MINERAL data table ………………………………………………………… 10 TASCHRON GEOCHRONOLOGY DATABASE ……………………………………… 12 Introduction ………………………………………………………………… 12 K-AR data table ……………………………………………………………… 12 RB-SR data table …………………………………………………………… 12 RB-SR_POOL data table……………………………………………………… 12 TASSTR STRUCTURAL GEOLOGY DATABASE …………………………………… 13 Introduction ………………………………………………………………… 13 MAPNAME.PAT tables ……………………………………………………… 13 TASSED STREAM SEDIMENT GEOCHEMICAL DATABASE ……………………… 14 Introduction ………………………………………………………………… 14 TASSED .PAT table ………………………………………………………… 14 TASSED.SAM table ………………………………………………………… 14 TASSED.ANL table ………………………………………………………… 15 TASSED.SRV table …………………………………………………………
    [Show full text]