Compilation of Technical Notes on Less Studied Elements.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Compilation of Technical Notes on Less Studied Elements.Pdf SCK•CEN/12201513 SCK•CEN ER-0323 2016/Ssa/Pub-10 Compilation of Technical Notes on less studied elements 1st Full version Sonia Salah1, Norbert Maes1, Christophe Bruggeman1, Lian Wang1, Richard Metcalfe2, James Wilson2 1SCK•CEN, 2QUINTESSA Publication date: January 2017 Contract naam: Contrat de R&D “Gestion à long terme des déchets radioactifs” (2015-2020) Contract nummer: CO-90-14-3690-00 / CCHO 2015-0304/00/00 Contract information: RS 15-SCK-MIG-29: Finalisation of technical notes on less known elements SCK•CEN Boeretang 200 BE-2400 Mol Belgium © SCK•CEN Studiecentrum voor Kernenergie Centre d’étude de l’énergie Nucléaire Boeretang 200 BE-2400 Mol Belgium Phone +32 14 33 21 11 Fax +32 14 31 50 21 http://www.sckcen.be Contact: Knowledge Centre [email protected] COPYRIGHT RULES All property rights and copyright are reserved to SCK•CEN. In case of a contractual arrangement with SCK•CEN, the use of this information by a Third Party, or for any purpose other than for which it is intended on the basis of the contract, is not authorized. With respect to any unauthorized use, SCK•CEN makes no representation or warranty, expressed or implied, and assumes no liability as to the completeness, accuracy or usefulness of the information contained in this document, or that its use may not infringe privately owned rights. SCK•CEN, Studiecentrum voor Kernenergie/Centre d'Etude de l'Energie Nucléaire Stichting van Openbaar Nut – Fondation d'Utilité Publique - Foundation of Public Utility Registered Office: Avenue Herrmann Debroux 40 – BE-1160 BRUSSEL Operational Office: Boeretang 200 – BE-2400 MOL SCK•CEN/12201513 Page 2 of 208 Compilation of Technical Notes on less studied elements Table of Content Configuration Control ............................................................................................................................................. 3 Table of Content ....................................................................................................................................................... 4 Abstract ........................................................................................................................................................................ 6 Keywords...................................................................................................................................................................... 7 List of Figures ............................................................................................................................................................. 8 List of Tables ............................................................................................................................................................. 13 1 Introduction ..................................................................................................................................................... 15 1.1 Group I: Reference element for non-retarded transport: Tritiated water (HTO) .......... 18 1.2 Group II: Elements characterized by anion exclusion ............................................................. 18 1.3 Group III: Elements characterized by cation exchange sorption ........................................ 19 1.4 Group IV: Elements characterized by transport behavior linked to DOM ...................... 19 1.5 Subgroup IVa: Transition metals (+ Be and Sn) ........................................................................ 20 1.6 Subgroup IVb: Trivalent lanthanides and actinides (La/Ac) ................................................. 21 1.7 Subgroup IVc: Tetravalent lanthanides and actinides (La/Ac) ............................................. 22 1.8 References ............................................................................................................................................... 22 2 GROUP II: Elements characterized by anion exclusion .................................................................... 24 2.1 Subgroup IIa: Monovalent anions .................................................................................................. 24 2.1.1 Technical note for Carbon (C) ................................................................................................ 24 2.1.2 Technical note for Chlorine (Cl) ............................................................................................. 35 2.1.3 Technical note for Selenium (Se) ........................................................................................... 40 2.2 Subgroup IIa: Divalent anions ......................................................................................................... 53 2.2.1 Technical note for Molybdenum (Mo) ................................................................................ 53 3 GROUP III: Elements characterized by cation exchange sorption ............................................... 60 3.1 Subgroup IIIa: Monovalent cations (alkali metals) .................................................................. 60 3.1.1 Technical note for Rubidium (Rb) ......................................................................................... 60 3.2 Subgroup IIIb: Divalent cations (alkali earth metals) .............................................................. 63 3.2.1 Technical note for Calcium (Ca) ............................................................................................. 63 3.2.2 Technical note for Radium (Ra).............................................................................................. 68 4 GROUP IV: Elements characterized by DOM linked transport ...................................................... 74 4.1 Subgroup IVa: Transition metals (+ Be and Sn) ........................................................................ 74 4.1.1 Technical note for Silver (Ag).................................................................................................. 74 4.1.2 Technical note for Beryllium (Be) .......................................................................................... 79 4.1.3 Technical note for Niobium (Nb) .......................................................................................... 90 4.1.4 Technical note for Nickel (Ni) .............................................................................................. 100 4.1.5 Technical note for Palladium (Pd) ...................................................................................... 109 4.1.6 Technical note for Tin (Sn) .................................................................................................... 112 4.1.7 Technical note for Zirconium (Zr) ...................................................................................... 117 4.2 Subgroup IVb: Trivalent lanthanides and actinides .............................................................. 122 4.2.1 Technical note for Actinium (Ac) ........................................................................................ 122 4.2.2 Technical note for Curium (Cm) .......................................................................................... 130 4.2.3 Technical note for Plutonium (Pu) ..................................................................................... 144 4.2.4 Technical note for Samarium (Sm) .................................................................................... 162 SCK•CEN/12201513 Page 4 of 208 Compilation of Technical Notes on less studied elements 4.3 Group IVc: Tetravalent lanthanides and actinides (+ pentavalent Pa) .......................... 166 4.3.1 Technical note for Neptunium (Np) .................................................................................. 166 4.3.2 Technical note for Thorium (Th) ......................................................................................... 176 4.3.3 Technical note for Protactinium (Pa) ................................................................................ 195 5 ANNEX I .......................................................................................................................................................... 206 SCK•CEN/12201513 Page 5 of 208 Compilation of Technical Notes on less studied elements Abstract The current report represents one of the documents intended to substantiate the assessment basis to be used within the scope of SFC 1 and represents a compilation of literature, speciation, solubility, sorption, and migration data for 21 less studied waste and safety relevant radionuclides discriminated by ONDRAF/NIRAS. The preparation of the so-called Technical Notes for 21 elements presented herein has been a common effort of SCK•CEN and QUINTESSA, with the former summarizing the knowledge on elements for which in-house data (experimental and modeling data) were available, while QUINTESSA mainly focused on gathering literature information on the elements for which no or only limited data existed. As compared to the “reference elements”, i.e. HTO, Cs, Sr, Am, Tc, and U for which so-called Topical Reports (TR’s) are available, the above mentioned radionuclides are considered to represent “less studied elements”, due to which O/N requested a specific report synthesizing the available and safety relevant information for these radionuclides. In this context, it should be referred to the research strategy developed by the Waste & Disposal Research Unit at SCK•CEN together with ONDRAF/NIRAS during the last years in preparation of the Safety and Feasibility Case 1. As studying all waste relevant radionuclides in detail was impossible, due to safety
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Gaspéite-Magnesite Solid Solutions and Their Significance
    78 Advances in Regolith GASPÉITE-MAGNESITE SOLID SOLUTIONS AND THEIR SIGNIFICANCE Meagan E. Clissold, Peter Leverett & Peter A. Williams School of Science, Food and Horticulture, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797 It is a surprising fact that, despite the increasing number of secondary minerals of Ni(II) recognized from oxidized base metal deposits (Anthony et al. 2003), the supergene chemistry responsible for their formation remains poorly understood. An understanding of this chemistry would be desirable in view of its importance with respect to geochemical exploration for the element, its behaviour in the regolith and the potential development of commercially exploitable secondary nickel resources. Of the secondary nickel minerals known, gaspéite, NiCO3, is perhaps the most common and has been observed in a number of Western Australian deposits. Notable among these is the 132 pit at Widgiemooltha, near Kambalda, WA (Nickel et al.1994). The supergene profile of the 132 pit consists of 5 zones: oxide, carbonate, violarite-pyrite, transition and primary zone. The carbonate zone is 3-12 m below surface and is characterized by the occurrence of a number of flat-lying to sub-horizontal veins of gaspéite that cut across altered wall rock comprising tremolite and goethite. These veins extend from what was a large sulfide body across the matrix layer. Single gaspéite veins have a size of 5 x 5 x 0.05 m on average and may occur in masses of up to 10 x 10 x 1 m; they are typically massive to either granular or fibrous. From the lower part of the carbonate zone upwards there is a progressive decrease in the amount of gaspéite and other carbonate minerals, and their respective nickel contents.
    [Show full text]
  • Violarite Fe2+Ni S4
    2+ 3+ Violarite Fe Ni2 S4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. As nodules up to 0.5 cm and massive. Physical Properties: Cleavage: Perfect on {001}. Tenacity: Brittle. Hardness = 4.5–5.5 VHN = 455–493 (100 g load). D(meas.) = n.d. D(calc.) = 4.79 Optical Properties: Opaque. Color: Violet-gray; distinctly violet in reflected light. Luster: Metallic. R: (400) 39.0, (420) 39.6, (440) 40.2, (460) 40.6, (480) 41.0, (500) 41.4, (520) 41.9, (540) 42.5, (560) 43.1, (580) 43.8, (600) 44.3, (620) 44.8, (640) 45.4, (660) 45.8, (680) 46.2, (700) 46.6 Cell Data: Space Group: Fd3m. a = 9.51 Z = 8 X-ray Powder Pattern: Vermilion mine, Sudbury, Canada. 2.85 (100), 1.674 (80), 1.820 (60), 2.36 (50), 1.059 (50), 1.183 (40), 1.115 (40) Chemistry: (1) (2) (3) Fe 17.01 19.33 18.52 Ni 38.68 33.94 38.94 Co 1.05 2.50 Cu 1.12 1.05 S 41.68 42.17 42.54 insol. 0.40 1.31 Total 99.94 100.30 100.00 (1) Vermilion mine, Sudbury, Canada; contains trace chalcopyrite. (2) Friday mine, Julian, California, USA; contains trace chalcopyrite. (3) FeNi2S4. Mineral Group: Linnaeite group. Occurrence: Of hydrothermal origin, with other sulfides. Association: Pyrrhotite, millerite, chalcopyrite, pentlandite. Distribution: In the USA, from the Friday mine, Julian, San Diego Co., California; the Key West mine, Clark Co., Nevada; the Copper King mine, Gold Hill district, Boulder Co., Colorado; the Lick Fork deposit, Floyd Co., Virginia; and the Gap Nickel mine, Lancaster Co., Pennsylvania.
    [Show full text]
  • Molybdenum in Natural Waters: a Review of Occurrence, Distributions and Controls
    Applied Geochemistry 84 (2017) 387e432 Contents lists available at ScienceDirect Applied Geochemistry journal homepage: www.elsevier.com/locate/apgeochem Invited Review Molybdenum in natural waters: A review of occurrence, distributions and controls * Pauline L. Smedley a, , David G. Kinniburgh b a British Geological Survey, Keyworth, Nottinghamshire, NG12 5GG, UK b Formerly British Geological Survey, Wallingford, Oxfordshire, OX10 8BB, UK article info abstract Article history: Molybdenum is an essential trace element for human, animal and plant health and has played an Received 3 January 2017 important part in the evolution of life on earth. Nonetheless, exposure to the element can be harmful and Received in revised form although the evidence for symptoms in humans is sparse, it has been linked with a number of health 29 April 2017 conditions in animal models. Molybdenum is present in trace quantities (1e10 mg/kg) in most rocks and Accepted 2 May 2017 soils and at concentrations less than, and often orders of magnitude less than, 10 mg/L in most fresh- Available online 6 May 2017 waters. It is the most abundant transition metal in open seawater (10 mg Mo/L) owing to the dominance, 2- Editorial handling by Prof. M. Kersten and low chemical reactivity, of the molybdate ion (MoO4 ). The 2011 WHO Guidelines for Drinking-Water Quality (fourth edition) advised a health-based value of Keywords: 70 mg/L for Mo but this is no longer promulgated as a formal guideline value as WHO consider such Groundwater concentrations to be rarely found in drinking water. This is indeed usually the case, but there are in- Redox stances where currently-used drinking waters do exceed 70 mg Mo/L.
    [Show full text]
  • Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
    Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINERAIOGIST, VOL.51 AUGUST' 1966 TABLE 3 These concentrationranges were arbitrarily selected' Ag Antimonpearceite Empressite Novakite Aramayoite Fizelyite Owyheeite Argentojarosite Jalpaite Pavonite Arsenopolybasite Marrite Ramdohrite Benjaminite Moschellandsbergite see also Unnamed Minerals 30-32 AI Abukumalite Calcium ferri-phosphate Ferrocarpholite Ajoite Carbonate-cyanotrichite Fersmite Akaganeite Chalcoalumite Fraipontite Aluminocopiapite Chukhrovite Galarite Alumohydrocalcite Clinoptilolite Garronite Alvanite Coeruleolactite Glaucokerinite Aminoffite Cofrnite Goldmanite Anthoinite Combeite Gordonite Arandisite Corrensite Giitzenite Armenite Crandallite Grovesite Ashcroftine Creedite Guildite Ba:ralsite Cryptomelane Gutsevichite Barbertonite Cymrite Harkerite Basaluminite Cyrilovite Ilibonite Bayerite Davisonite Hidalgoite Bearsite Deerite H6gbomite Beidellite Delhayelite Hydrobasaluminite Beryllite Dickite Hydrocalumite Bialite Doloresite flydrogrossular Bikitaite Eardleyite Hydroscarbroite Boehmite Elpasolite Hydrougrandite Blggildite Endellite Indialite Bolivarite Englishite Iron cordierite Brammallite Ephesite Jarlite Brazilianire Erionite Johachidolite Brownmillerite Falkenstenite Juanite Buddingtonite Faustite Jusite Cadwaladerite Ferrazite Kalsilite Cafetite Ferrierite Karnasurtite 1336 GROUPSBY E.LEM\:,NTS 1337 Karpinskyite Orlite Stenonite Katoptrite Orthochamosite Sudoite Kehoeite Osarizawaite Sursassite Kennedyite Osumilite Swedenborgite Kimzeyite Overite Taaffeite Kingite Painite Tacharanite Knipovichite
    [Show full text]
  • Primary Minerals of the Jáchymov Ore District
    Journal of the Czech Geological Society 48/34(2003) 19 Primary minerals of the Jáchymov ore district Primární minerály jáchymovského rudního revíru (237 figs, 160 tabs) PETR ONDRU1 FRANTIEK VESELOVSKÝ1 ANANDA GABAOVÁ1 JAN HLOUEK2 VLADIMÍR REIN3 IVAN VAVØÍN1 ROMAN SKÁLA1 JIØÍ SEJKORA4 MILAN DRÁBEK1 1 Czech Geological Survey, Klárov 3, CZ-118 21 Prague 1 2 U Roháèových kasáren 24, CZ-100 00 Prague 10 3 Institute of Rock Structure and Mechanics, V Holeovièkách 41, CZ-182 09, Prague 8 4 National Museum, Václavské námìstí 68, CZ-115 79, Prague 1 One hundred and seventeen primary mineral species are described and/or referenced. Approximately seventy primary minerals were known from the district before the present study. All known reliable data on the individual minerals from Jáchymov are presented. New and more complete X-ray powder diffraction data for argentopyrite, sternbergite, and an unusual (Co,Fe)-rammelsbergite are presented. The follow- ing chapters describe some unknown minerals, erroneously quoted minerals and imperfectly identified minerals. The present work increases the number of all identified, described and/or referenced minerals in the Jáchymov ore district to 384. Key words: primary minerals, XRD, microprobe, unit-cell parameters, Jáchymov. History of mineralogical research of the Jáchymov Chemical analyses ore district Polished sections were first studied under the micro- A systematic study of Jáchymov minerals commenced scope for the identification of minerals and definition early after World War II, during the period of 19471950. of their relations. Suitable sections were selected for This work was aimed at supporting uranium exploitation. electron microprobe (EMP) study and analyses, and in- However, due to the general political situation and the teresting domains were marked.
    [Show full text]
  • In Situ FTIR Study of CO2 Reduction on Inorganic Analogues of Carbon Monoxide Dehydrogenase† Cite This: Chem
    ChemComm View Article Online COMMUNICATION View Journal | View Issue In situ FTIR study of CO2 reduction on inorganic analogues of carbon monoxide dehydrogenase† Cite this: Chem. Commun., 2021, 57, 3267 Ji-Eun Lee, a Akira Yamaguchi, ab Hideshi Ooka, a Tomohiro Kazami,b Received 6th November 2020, Masahiro Miyauchi, b Norio Kitadai cd and Ryuhei Nakamura *ac Accepted 4th January 2021 DOI: 10.1039/d0cc07318k rsc.li/chemcomm The CO2-to-CO reduction by carbon monoxide dehydrogenase capture and utilization compared to more complex pathways, (CODH) with a [NiFe4S4] cluster is considered to be the oldest such as the Calvin cycle, which is the most widespread carbon pathway of biological carbon fixation and therefore may have been fixation pathway in the biosphere today. involved in the origin of life. Although previous studies have Under anaerobic conditions, carbon fixation in the W–L Creative Commons Attribution-NonCommercial 3.0 Unported Licence. investigated CO2 reduction by Fe and Ni sulfides to identify the pathway is initiated by the reduction of CO2 to CO by carbon prebiotic origin of the [NiFe4S4] cluster, the reaction mechanism monoxide dehydrogenase (CODH), which utilizes a highly conserved 3 remains largely elusive. Herein, we applied in situ electrochemical [NiFe4S4] cluster as the catalytic site (Scheme 1a). The generated CO ATR-FTIR spectroscopy to probe the reaction intermediates of can be combined with a methyl group (–CH3)toformathioester, greigite (Fe3S4) and violarite (FeNi2S4). Intermediate species assign- acetyl-CoA, which is a central metabolite of biological carbon 2,4 able to surface-bound CO2 and formyl groups were found to be metabolism (Scheme 1b).
    [Show full text]
  • MAGMATIC SULFIDE DEPOSITS (MODELS 1, 2B, 5A, 5B, 6A, 6B, and 7A; Page, 1986A-G)
    MAGMATIC SULFIDE DEPOSITS (MODELS 1, 2b, 5a, 5b, 6a, 6b, and 7a; Page, 1986a-g) by Michael P. Foose, Michael L. Zientek, and Douglas P. Klein SUMMARY OF RELEVANT GEOLOGIC, GEOENVIRONMENTAL, AND GEOPHYSICAL INFORMATION Deposit geology Magmatic sulfide deposits are sulfide mineral concentrations in mafic and ultramafic rocks derived from immiscible sulfide liquids. A number of schemes exist for subdividing these deposits. Most are based on the tectonic setting and petrologic characteristics of the mafic and ultramafic rocks (Page and others, 1982; Naldrett, 1989), or on the spatial association of mineralized rock with enclosing ultramafic and mafic host rocks (stratabound, discordant, marginal, and other; Hulbert and others, 1988). Page (1986a-g) presented discussions of several different subtypes based, in part, on both these approaches (Models 1, 2b, 5a, 5b, 6a, 6b, and 7a). However, these deposits are similar enough that they can be treated as a group with regard to their geoenvironmental manifestations. The similarity of these deposits result, in part, from similar genesis. Exsolution of immiscible sulfide liquids from mafic-to-ultramafic magmas is the fundamental process that forms magmatic sulfide deposits. Once formed, droplets of immiscible sulfide liquid settle through less dense silicate magma. The sulfide liquid acts as a "collector" for cobalt, copper, nickel, and platinum-group elements (PGE) because these elements are preferentially concentrated in sulfide liquids at levels 10 to 100,000 times those in silicate liquids. To a lesser degree, iron is also preferentially partitioned into the sulfide liquid and, because of its greater abundance, most immiscible sulfide liquid is iron-rich. The combination of physically concentrating dense sulfide liquid and chemically concentrating elements in the sulfide liquid is responsible for forming most economically minable, magmatic-sulfide deposits.
    [Show full text]
  • Transformation Study of Pentlandite/Pyrrhotite to Violarite
    252 Regolith 2005 – Ten Years of CRC LEME THE TRANSFORMATION OF PENTLANDITE TO VIOLARITE UNDER MILD HYDROTHERMAL CONDITIONS: A DISSOLUTION- REPRECIPITATION REACTION Allan Pring1,2, Christophe Tenailleau,1 Barbara Etschmann1, Joel Brugger1,3 & Ben Grguric4 1Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, SA, 5000 2School of Earth & Environmental Science, University of Adelaide, SA, 5005 2CRC LEME, School of Earth & Environmental Science, University of Adelaide, SA, 5005 4Minerals Exploration, BHP Billiton Ltd., PO Box 91, Belmont, WA, 6984 INTRODUCTION Violarite, FeNi2S4, occurs abundantly in the supergene alteration zones of many massive and disseminated Ni sulfide deposits, where it replaces primary nickel sulfide minerals such as pentlandite (Nickel 1973, Misra & Fleet 1974). The nickel deposits of Western Australia’s Yilgarn Craton have deep weathering profiles and supergene violarite constitutes a considerable proportion of the ore in some of these deposits. Thus, violarite is probably the most economically important member of the thiospinel mineral group. Violarite can also form as a primary phase by exsolution during the cooling of pentlandite ((Fe,Ni)9S8) (Grguric 2002). Understanding the thermodynamics and kinetics of the formation of violarite in the weathering profile is important for understanding alteration patterns in and around nickel deposits and has significant implications for ore processing. Supergene violarite is generally very fine-grained and relatively porous and it has a poor response in the floatation systems used to treat many massive sulfide ores. On the other hand, a proportion of violarite in the nickel concentrate facilitates smelting, as the burning of violarite is a highly exothermic reaction (Dunn & Howes 1996).
    [Show full text]
  • Geochemistry of Fluid Inclusions and Hydrothermal Alteration Vein- and Fracture-Controlled Mineralization, Stockwork '• Molybdenum Deposits
    GEOCHEMISTRY OF FLUID INCLUSIONS AND HYDROTHERMAL ALTERATION VEIN- AND FRACTURE-CONTROLLED MINERALIZATION, STOCKWORK '• MOLYBDENUM DEPOSITS by MARK STEPHEN BLOOM BSc, New Mexico Institute of Mining and Technology, 1972 MSc, New Mexico Institute of Mining and Technology, 1975 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department - of Geological Sciences We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA February 1983 © Mark Stephen Bloom, 1983 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Geological Sciences The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date 16 April, 1983 Abstract Molybdenum mineralization and coextensive alteration at Questa, Hudson Bay Mountain, and Endako occur in single/composite veinlets which exhibit distinctive alteration assemblages and paragenesis. Fluid inclusion populations from each ve'inlet type are compositionally distinct. Early fluorine rich, biotite-stable alteration is associated with hypersaline brines. These inclusions homogenize most frequently by halite dissolution at temperatures from 350°-600°+C. Molybdenum miner alization also coincides with quartz-sericite-pyrite alteration and inclusions having moderate to high salinity and lower (£350°C) temperatures of entrapment.
    [Show full text]