Mitochondrial Thymidine Kinase Inhibitors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent -
Wo 2010/075007 A2
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075007 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) G06F 19/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/12 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/067757 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 11 December 2009 ( 11.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/3 16,877 16 December 2008 (16.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): DODDS, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, W., Jean [US/US]; 938 Stanford Street, Santa Monica, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, CA 90403 (US). -
Enzymatic Manufacture of Deoxythymidine-5'-Triphosphate with Permeable Intact Cells of E. Coli Coexpressing Thymidylate Kinase
J. Microbiol. Biotechnol. (2015), 25(12), 2034–2042 http://dx.doi.org/10.4014/jmb.1506.06020 Research Article Review jmb Enzymatic Manufacture of Deoxythymidine-5’-Triphosphate with Permeable Intact Cells of E. coli Coexpressing Thymidylate Kinase and Acetate Kinase Jiao Zhang, Yahui Qian, Qingbao Ding*, and Ling Ou* State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China Received: June 8, 2015 Revised: July 26, 2015 A one-pot process of enzymatic synthesis of deoxythymidine-5’-triphosphate (5’-dTTP) Accepted: September 11, 2015 employing whole cells of recombinant Escherichia coli coexpressing thymidylate kinase (TMKase) and acetate kinase (ACKase) was developed. Genes tmk and ack from E. coli were First published online cloned and inserted into pET28a(+), and then transduced into E. coli BL21 (DE3) to form September 15, 2015 recombinant strain pTA in which TMKase and ACKase were simultaneously overexpressed. It *Corresponding authors was found that the relative residual specific activities of TMKase and ACKase, in pTA Q.D. pretreated with 20 mM ethylene diamine tetraacetic acid (EDTA) at 25oC for 30 min, were 94% Phone: +86-21-64250676; Fax: +86-21-64250676; and 96%, respectively. The yield of 5’-dTTP reached above 94% from 5 mM deoxythymidine E-mail: [email protected] 5’-monophosphate (5’-dTMP) and 15 mM acetyl phosphate catalyzed with intact cells of pTA L.O. Phone: +86-21-64253257; pretreated with EDTA. The process was so effective that only 0.125 mM adenosine-5’- Fax: +86-21-64253257; triphosphate was sufficient to deliver the phosphate group from acetyl phosphate to dTMP E-mail: [email protected] and dTDP. -
Table S1. List of Oligonucleotide Primers Used
Table S1. List of oligonucleotide primers used. Cla4 LF-5' GTAGGATCCGCTCTGTCAAGCCTCCGACC M629Arev CCTCCCTCCATGTACTCcgcGATGACCCAgAGCTCGTTG M629Afwd CAACGAGCTcTGGGTCATCgcgGAGTACATGGAGGGAGG LF-3' GTAGGCCATCTAGGCCGCAATCTCGTCAAGTAAAGTCG RF-5' GTAGGCCTGAGTGGCCCGAGATTGCAACGTGTAACC RF-3' GTAGGATCCCGTACGCTGCGATCGCTTGC Ukc1 LF-5' GCAATATTATGTCTACTTTGAGCG M398Arev CCGCCGGGCAAgAAtTCcgcGAGAAGGTACAGATACGc M398Afwd gCGTATCTGTACCTTCTCgcgGAaTTcTTGCCCGGCGG LF-3' GAGGCCATCTAGGCCATTTACGATGGCAGACAAAGG RF-5' GTGGCCTGAGTGGCCATTGGTTTGGGCGAATGGC RF-3' GCAATATTCGTACGTCAACAGCGCG Nrc2 LF-5' GCAATATTTCGAAAAGGGTCGTTCC M454Grev GCCACCCATGCAGTAcTCgccGCAGAGGTAGAGGTAATC M454Gfwd GATTACCTCTACCTCTGCggcGAgTACTGCATGGGTGGC LF-3' GAGGCCATCTAGGCCGACGAGTGAAGCTTTCGAGCG RF-5' GAGGCCTGAGTGGCCTAAGCATCTTGGCTTCTGC RF-3' GCAATATTCGGTCAACGCTTTTCAGATACC Ipl1 LF-5' GTCAATATTCTACTTTGTGAAGACGCTGC M629Arev GCTCCCCACGACCAGCgAATTCGATagcGAGGAAGACTCGGCCCTCATC M629Afwd GATGAGGGCCGAGTCTTCCTCgctATCGAATTcGCTGGTCGTGGGGAGC LF-3' TGAGGCCATCTAGGCCGGTGCCTTAGATTCCGTATAGC RF-5' CATGGCCTGAGTGGCCGATTCTTCTTCTGTCATCGAC RF-3' GACAATATTGCTGACCTTGTCTACTTGG Ire1 LF-5' GCAATATTAAAGCACAACTCAACGC D1014Arev CCGTAGCCAAGCACCTCGgCCGAtATcGTGAGCGAAG D1014Afwd CTTCGCTCACgATaTCGGcCGAGGTGCTTGGCTACGG LF-3' GAGGCCATCTAGGCCAACTGGGCAAAGGAGATGGA RF-5' GAGGCCTGAGTGGCCGTGCGCCTGTGTATCTCTTTG RF-3' GCAATATTGGCCATCTGAGGGCTGAC Kin28 LF-5' GACAATATTCATCTTTCACCCTTCCAAAG L94Arev TGATGAGTGCTTCTAGATTGGTGTCggcGAAcTCgAGCACCAGGTTG L94Afwd CAACCTGGTGCTcGAgTTCgccGACACCAATCTAGAAGCACTCATCA LF-3' TGAGGCCATCTAGGCCCACAGAGATCCGCTTTAATGC RF-5' CATGGCCTGAGTGGCCAGGGCTAGTACGACCTCG -
(12) Patent Application Publication (10) Pub. No.: US 2006/0088532 A1 Alitalo Et Al
US 20060O88532A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0088532 A1 Alitalo et al. (43) Pub. Date: Apr. 27, 2006 (54) LYMPHATIC AND BLOOD ENDOTHELIAL Related U.S. Application Data CELL GENES (60) Provisional application No. 60/363,019, filed on Mar. (76) Inventors: Kari Alitalo, Helsinki (FI); Taija 7, 2002. Makinen, Helsinki (FI); Tatiana Petrova, Helsinki (FI); Pipsa Publication Classification Saharinen, Helsinki (FI); Juha Saharinen, Helsinki (FI) (51) Int. Cl. A6IR 48/00 (2006.01) Correspondence Address: A 6LX 39/395 (2006.01) MARSHALL, GERSTEIN & BORUN LLP A6II 38/18 (2006.01) 233 S. WACKER DRIVE, SUITE 6300 (52) U.S. Cl. .............................. 424/145.1: 514/2: 514/44 SEARS TOWER (57) ABSTRACT CHICAGO, IL 60606 (US) The invention provides polynucleotides and genes that are (21) Appl. No.: 10/505,928 differentially expressed in lymphatic versus blood vascular endothelial cells. These genes are useful for treating diseases (22) PCT Filed: Mar. 7, 2003 involving lymphatic vessels, such as lymphedema, various inflammatory diseases, and cancer metastasis via the lym (86). PCT No.: PCT/USO3FO6900 phatic system. Patent Application Publication Apr. 27, 2006 Sheet 1 of 2 US 2006/0088532 A1 integrin O9 integrin O1 KIAAO711 KAAO644 ApoD Fig. 1 Patent Application Publication Apr. 27, 2006 Sheet 2 of 2 US 2006/0088532 A1 CN g uueleo-gº US 2006/0O88532 A1 Apr. 27, 2006 LYMPHATIC AND BLOOD ENDOTHELLAL CELL lymphatic vessels, such as lymphangiomas or lymphang GENES iectasis. Witte, et al., Regulation of Angiogenesis (eds. Goldber, I. D. & Rosen, E. M.) 65-112 (Birkauser, Basel, BACKGROUND OF THE INVENTION Switzerland, 1997). -
Rabbit Anti-Human TK1 Polyclonal Antibody (CABT-L2019) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
Rabbit Anti-Human TK1 Polyclonal Antibody (CABT-L2019) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Polyclonal Antibody to Thymidine Kinase 1, Soluble (Knockout Validated) Specificity The antibody is a rabbit polyclonal antibody raised against TK1. It has been selected for its ability to recognize TK1 in immunohistochemical staining and western blotting. Target TK1 Immunogen Recombinant fragment corresponding to human TK1 (Ser2~Asn234) Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Antigen-specific affinity chromatography followed by Protein A affinity chromatography Conjugate Unconjugated Applications WB Format Liquid Concentration Lot specific Size 200 μg Buffer Supplied as solution form in 0.01M PBS with 50% glycerol, pH7.4. Preservative 0.05% Proclin-300 Storage Avoid repeated freeze/thaw cycles. Store at 4°C for frequent use. Aliquot and store at -20°C for 12 months. Ship 4°C with ice bags Warnings For research use only. BACKGROUND 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Introduction TK1 Belongs to the thymidine kinase family. Keywords TK2;Thymidine kinase, cytosolic GENE INFORMATION Gene Name TK1 thymidine kinase 1, soluble [ Homo sapiens (human) ] Official Symbol TK1 Synonyms TK1; thymidine kinase 1, soluble; TK2; thymidine kinase, cytosolic; thymidine kinase-1; thymidine kinase 1 soluble isoform; Entrez Gene ID 7083 -
Overexpression of DNA Polymerase @Jsensitizes Mammalian Cells to 2',3'
ICANCERRESEARCH57.I10-I 16,JanuaryI. I997J Overexpression of DNA Polymerase @JSensitizesMammalian Cells to 2',3'-Deoxycytidine and 3'-Azido-3' .deoxythymidine' Khalil Bouayadi, Jean-Sébastien Hoffmann, Pascal Fons, Michele Tiraby, Jean-Paul Reynes, and Christophe Cazaux2 Laboratoire de Microbiologic et de Génétique,UniversitéPaul Sabatier, 118 route de Narbonne, 31062 Toulouse cédex(K. B., P. F., C. C.]; Institut de Pharmacologic et Biologic Structurale. Centre National de Ia Recherche ScienujIque, UPR 9062, 205 route de Narbonne, 31077 Toulouse cédexfl. S. H.!; and Laboratoire CAYLA, ZI. Montaudran, 5 rue J. Rodier, 3/400 Toulouse (M. T., J. P. R.J ABSTRACT nator AZT-MP was also observed (10, 11). In vivo, AZT-MP is incorporated into cellular DNA (12), and it has been suggested that Mammalian DNA polymerase @3is a DNA repair enzyme expressed polymerase 13may play a role in this process (1 1). @ constitutively at a low level. In vitro, purified DNA polymerase (Pol) incorporates the nucleotide analogues 2'-3' deoxycytidine (ddC)-triphos AZT and ddC are antiviral agents currently used in the treatment phate and 3'-azido-3'-deoxythymidine (AZT)-triphosphate Into DNA, of AIDS. These chemotherapeutic drugs target HIV reverse tran causing chain termination. We have tested the possibility ofenhancing the scriptase which incorporates them into HIV DNA, terminating cytotoxicity of these chain terminators against mammalian cells by in DNA polymerization (13). In this study, we hypothesized that creasing the level of Pol (I. Chinese hamster ovary AA8 and murine overexpression of Pol f3, a cellular target of ddC and AZT, might melanoma B16 cell lines were stably transfected with rat pol fi cDNA render these analogues effective also against tumor cells. -
The Metabolic Building Blocks of a Minimal Cell Supplementary
The metabolic building blocks of a minimal cell Mariana Reyes-Prieto, Rosario Gil, Mercè Llabrés, Pere Palmer and Andrés Moya Supplementary material. Table S1. List of enzymes and reactions modified from Gabaldon et. al. (2007). n.i.: non identified. E.C. Name Reaction Gil et. al. 2004 Glass et. al. 2006 number 2.7.1.69 phosphotransferase system glc + pep → g6p + pyr PTS MG041, 069, 429 5.3.1.9 glucose-6-phosphate isomerase g6p ↔ f6p PGI MG111 2.7.1.11 6-phosphofructokinase f6p + atp → fbp + adp PFK MG215 4.1.2.13 fructose-1,6-bisphosphate aldolase fbp ↔ gdp + dhp FBA MG023 5.3.1.1 triose-phosphate isomerase gdp ↔ dhp TPI MG431 glyceraldehyde-3-phosphate gdp + nad + p ↔ bpg + 1.2.1.12 GAP MG301 dehydrogenase nadh 2.7.2.3 phosphoglycerate kinase bpg + adp ↔ 3pg + atp PGK MG300 5.4.2.1 phosphoglycerate mutase 3pg ↔ 2pg GPM MG430 4.2.1.11 enolase 2pg ↔ pep ENO MG407 2.7.1.40 pyruvate kinase pep + adp → pyr + atp PYK MG216 1.1.1.27 lactate dehydrogenase pyr + nadh ↔ lac + nad LDH MG460 1.1.1.94 sn-glycerol-3-phosphate dehydrogenase dhp + nadh → g3p + nad GPS n.i. 2.3.1.15 sn-glycerol-3-phosphate acyltransferase g3p + pal → mag PLSb n.i. 2.3.1.51 1-acyl-sn-glycerol-3-phosphate mag + pal → dag PLSc MG212 acyltransferase 2.7.7.41 phosphatidate cytidyltransferase dag + ctp → cdp-dag + pp CDS MG437 cdp-dag + ser → pser + 2.7.8.8 phosphatidylserine synthase PSS n.i. cmp 4.1.1.65 phosphatidylserine decarboxylase pser → peta PSD n.i. -
Direct Induction of Gj-Specific Transcripts Following Reactivation of the Cdc28 Kinase in the Absence of De Novo Protein Synthesis
Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Direct induction of Gj-specific transcripts following reactivation of the Cdc28 kinase in the absence of de novo protein synthesis Nicholas J. Marini and Steven I. Reed* The Scripps Research Institute, Department of Molecular Biology, La Jolla, California 92037 USA In Saccharomyces cerevisiae, the genes encoding the HO endonuclease, G,-specific cyclins CLNl and CLN2, as well as most proteins involved in DNA synthesis, are periodically transcribed with maximal levels reached in late G,. For HO and the DNA replication genes, cell cycle stage-specific expression has been shown to be dependent on the Cdc28 kinase and passage through START. Here, we show that cells released from cdc28*^ arrest in the presence of cycloheximide show wild-type levels of induction for HO, CLNl, and CDC9 (DNA ligase). Induction is gradual with a significant lag not seen in untreated cells where transcript levels fluctuate coordinately with the cell cycle. This lag may be due, at least in part, to association of the Cdc28 peptide with Gj cyclins to form an active kinase complex because overexpression of CLN2 prior to release in cycloheximide increases the rate of induction for CDC9 and HO. Consistent with this, release from pheromone arrest (where CLNl and CLN2 are not expressed) in cycloheximide shows no induction at all, Transcriptonal activation of CDC9 is likely to be mediated through a conserved promoter element also present in genes for other DNA synthesis enzymes similarly cell cycle regulated. The element contains an intact Mlul restriction enzyme recognition site (consensus ~5'-A/TPuACGCGTNA/T-3'), Insertion of a 20-bp fragment from the CDC9 promoter (containing a Mlul element) upstream of LacZ confers both periodic expression and transcriptional induction in cycloheximide following release from cdc28"' arrest. -
Thymidine Kinase 1 Antibody A
Revision 1 C 0 2 - t Thymidine Kinase 1 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 0 6 Web: [email protected] 9 www.cellsignal.com 8 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB, IP H Mk Endogenous 26 Rabbit P04183 7083 Product Usage Information 3. Bello, L.J. (1974) Exp Cell Res 89, 263-74. 4. Littlefield, J.W. (1966) Biochim Biophys Acta 114, 398-403. Application Dilution 5. Chang, Z.F. et al. (1998) J Biol Chem 273, 12095-100. 6. Chen, Y.L. et al. (2010) J Biol Chem 285, 27327-35. Western Blotting 1:1000 7. Hannigan, B.M. et al. (1993) Cancer Biother 8, 189-97. Immunoprecipitation 1:50 8. Pan, Z.L. et al. (2010) J Cancer Res Clin Oncol 136, 1193-9. 9. Chen, Y. et al. (2010) Int J Clin Oncol 15, 359-68. 10. Konoplev, S.N. et al. (2010) Am J Clin Pathol 134, 472-7. Storage 11. Xu, Y. et al. (2012) Tumour Biol 33, 475-83. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% 12. Alegre, M.M. et al. (2012) J Oncol 2012, 575647. glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity Thymidine Kinase 1 Antibody recognizes endogenous levels of total TK1 protein. This antibody does not cross-react with TK2 protein. -
A Review of Isozymes in Cancer1
Cancer Research VOLUME31 NOVEMBER 1971 NUMBER11 [CANCER RESEARCH 31, 1523-1542, November 1971] A Review of Isozymes in Cancer1 Wayne E. Criss Department of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida 32601 TABLE OF CONTENTS postulated role for that particular isozymic system in cellular metabolism. Summary 1523 Introduction 1523 Normal enzyme differentiation 1523 INTRODUCTION Tumor enzyme differentiation 1524 Isozymes 1524 Normal Enzyme Differentiation DNA polymerase 1524 Enzyme differentiation is the process whereby, during the Hexokinase 1525 Fructose 1,6-diphosphatase 1525 development of an organ in an animal, the organ acquires the quantitative and qualitative adult enzyme patterns (122). Key Aldolase 1526 pathway enzymes in several metabolic processes have been Pyruvate kinase 1527 found to undergo enzymatic differentiation. The enzymes Láclatedehydrogenase 1527 Isocitrate dehydrogenase 1527 involved in nitrogen metabolism, and also in urea cycle Malate dehydrogenase 1528 metabolism (180), are tyrosine aminotransferase (123, 151, Glycerol phosphate dehydrogenase 1529 330, 410), tryptophan pyrrolase (261), serine dehydratase Glutaminase 1529 (123, 410), histidine ammonia lyase (11), and aspartate Aspartate aminotransferase 1530 aminotransferase (337, 388). The enzymes involved in nucleic Adenylate kinase 1531 acid metabolism are DNA polymerase (156, 277) and RNase (52). In glycolysis the enzymes are hexokinase-glucokinase Carbamyl phosphate synthetase 1531 Lactose synthetase 1533 (98, 389), galactokinase 30, aldolase (267, 315), pyruvate Discussion 1533 kinase (73, 386), and lactate dehydrogenase (67, 69). In References 1533 mitochondrial oxidation they are NADH oxidase, succinic oxidase, a-glycero-P oxidase, ATPase, cytochrome oxidase, and flavin content (84, 296). In glycogen metabolism the SUMMARY enzymes involved are UDPG pyrophosphorylase and UDPG glucosyltransferase (19). -
Identification and Purification of a Factor That Binds to the Mlu I Cell Cycle Box of Yeast DNA Replication Genes
Proc. Nati. Acad. Sci. USA Vol. 88, pp. 7155-7159, August 1991 Biochemistry Identification and purification of a factor that binds to the Mlu I cell cycle box of yeast DNA replication genes (Saccharomyces cerevisiae/G, phase/S phase/periodic transcription/DNA polymerase a) RATI VERMA, ARDEM PATAPOUTIAN, COLIN B. GORDON*, AND JUDITH L. CAMPBELL Braun Laboratories, California Institute of Technology, Pasadena, CA 91125 Communicated by John D. Roberts, May 15, 1991 ABSTRACT In Saccharomyces cerevisiae, the genes encod- that are a mixture of the sequences adjacent to both sites in ing at least 10 enzymes involved in DNA replication are the natural promoter confers periodicity (18). The Mlu I site periodically expressed in the late GI and S phases of the cell is necessary for the periodic expression of the CDC21 and cycle. All of these genes have one copy or more of the sequence CDC9 promoters as well (16, 17), suggesting coordinate ACGCGT, which conforms to the recognition site for the Mlu regulation of the entire set of periodic replication genes I restriction endonuclease. For the CDC21, CDC9, and POLl through Mlu I sites. We have designated the UAS that is genes, the Mlu I site has been shown to be absolutely required involved the Mlu I cell cycle box (MCB). for periodic transcription. Using nuclear extracts fractionated The MCB is a potential target for a trans-acting factor that by conventional and oligonucleotide affinity chromatography, responds either directly or indirectly to Start. Identification we have purified a 17-kDa protein that recognizes the Ml4 I of such a factor in an organism such as yeast should facilitate motif.