Ficus Seed Dispersal Guilds: Ecology, Evolution and Conservation Implications

Total Page:16

File Type:pdf, Size:1020Kb

Ficus Seed Dispersal Guilds: Ecology, Evolution and Conservation Implications Ficus seed dispersal guilds: ecology, evolution and conservation implications MICHAEL J. SHANAHAN Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Centre for Biodiversity and Conservation School of Biology December 2000 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others 1 ACKNOWLEDGEMENTS Firstly, I wish to thank my supervisor, Dr Steve Compton, for initially turning me on to the genus Ficus and for his guidance throughout my doctorate, especially during the write-up period. This research was conducted whilst I was a visiting research fellow at the Institute of Biodiversity and Environmental Conservation (IBEC) at Universiti Malaysia Sarawak (UNIMAS). For my appointment to this post I thank Professor Ghazally Ismail and Dr Stuart Davies and, for administrative help at UNIMAS, Yaziz and Dayang. Fieldwork conducted in Sarawak was undertaken with permission of the Forest Department Sarawak and for this I thank, in particular, Abdul Abang Hj. Hamid and Sapuan Hj. Ahmad. Logistical support in Lambir was provided by Johan and Mr Abdullah. Canopy studies were greatly aided by permission to use the walkways and towers of the Canopy Biology Program in Sarawak and I wish to acknowledge the assistance of Professor Tohru Nakashizuka and the late Professor Tamiji Inoue. For permission to live in the "American house" in Lambir I am grateful to the Center for Tropical Forest Science (Smithsonian Tropical Research Institute) and in particular, Drs Jim La Frankie and Elizabeth Losos. My work in Borneo was greatly aided by my first-rate research assistant Siba anak Aji whose constant hard work and high spirits were an inspiration to me. Further assistance was provided by Ruby and Hazel Oakley. Much of my Bornean research would not have been possible without the previous research and assistance of Rhett Harrison, to whom I am highly grateful. Life in the house in Lambir was made fun and interesting by the presence, at various times, of Rhett Harrison, Igor and Sophie Debski, Matt Potts, Tristram Seidler, Chuck Cannon, Supinda Bunyanavich, Hazel Oakley, Jose Nieto, Lisa de Lissio, Jenn Smith and Tim Laman, Kenta Tanaka, Yoko Inui, Kaori Murase, Kaori Sato, Aya Hatada, Yamauchi, Hideo and Michiko Nakagawa. The generosity and hospitality of my Iban neighbours, particularly Siba and family, Mama Susi, Mama Franklin and Ukat were greatly appreciated, as was all of the tuak. Chapter 6, on the figs of Long Island, was the result of a collaboration with Dr Rhett Harrison (Kyoto University), Ruby Yamuna (University of Papua New Guinea) and Professor Ian Thornton (La Trobe University). I am extremely grateful to Professor Thornton for inviting me to join the National Geographic funded research trip to Long Island. The other participants on the expedition (Simon Cook, Clinton Schipper, Ross Moore, Professor John Edwards, Rose Singadan and William Boen) ensured that we had good laughs and good poker in the face of the various calamities we endured. The management and staff of Jais Aben Resort provided assistance before and after our time on Long Island and sent emergency food supplies. Thanks are also due to the Christensen Research Institute (Madang) for access to their library and the Forest Research Institute in Lae for identification of specimens. Chapter 7, the global review of fig-eating by vertebrates, was completed in collaboration with Samson So (University of Hong Kong) and made use of unpublished data and other assistance kindly provided by many researchers to whom I am extremely grateful. These are alphabetically, Rauf Ali, Des Allen, Paul Aston, Ramana Athreya, Vidya Athreya, Yves Basset, Mark Bayley, Cornelis Berg, David Bishop, Lien-Siang Chou, Steve Compton, Ed Colijn, Nancylou Conklin-Brittain, James Cook, Richard Corlett, Jared Diamond, Ellen Dierenfeld, Francoise Dowsett-Lemaire, Dan Eisikowitch, R. Farrah, Mauro Galleti, Harish Gaonkar, Jennifer Garrison, Marc Gibernau, David Gorchov, Jaco Greeff, Tristan Guillosson, Britta Denise Hardesty, Allen Herre, Dan Hoare, Matt Heydon, Andrew Mack, Carmi Korine, Nick Helme, Ridwan Jafar, Rajah Jayapal, Elisabeth Kalko, Dhanjaya Katju, Ragupathy Kannan, Margaret Kinnaird, Cheryl Knott, Tim Laman, Mark Leighton, Carlos Machado, Tim Male, Kim McConkey, James MacPherson, Vojtech Novotny, James Paterson, Carlos Peres, Andrew Plumptre, Pilai Poonswad, Jackie Pritchard, S.M.A. Rashid, Vernon Reynolds, Monica Romo, Jana Schulz, Scott Silver, Ana Sosa-Asanza, Hugh Spencer, Sam Stier, S. Subramanya, Jingchuan Sun, Vivek Tawari, John Terborgh, Ian Thornton, George Weiblen, Robert Whittaker and David Wilson. The research was funded largely by the States of Jersey Education Committee to which I am most grateful. I am also grateful for additional funding in the form of a Bat Conservation International Student Scholarship (1998) and Water Chicken Foundation Travel Bursary. This thesis and publications arising from work described here benefited from discussions with many individuals especially John Altringham, John Grahame, Allen Herre, Dan Hoare, Nick Mawdsley, Jamie Moore and Jo Wong. I am also extremely grateful to Dr Andrew Carter for providing me with a home during the important final two months of my doctorate. Finally, I would like to thank my parents, Jennifer and John Shanahan, for all their love and support over the years I have spent in Leeds and overseas in the process of creating this thesis. 1 2 ABSTRACT Ficus (Moraceae) is a large plant genus of considerable ecological, evolutionary and conservation interest. This study focused on the interaction between Ficus species and the vertebrates that eat their fruit (figs), thereby acting as potential seed dispersers. Specifically, the study considered this interaction with regard to the mechanisms that allow different guilds of sympatric Ficus species to attract differentially subsets of frugivore communities. Fig packaging and presentation was studied in Borneo and on an island off New Guinea, the former study, of 43 Ficus species represents the largest ever characterisation of the fruiting ecology of sympatric congeners. The Ficus species studied exhibited considerable diversity in the size, colour, texture, height, water content, seed burden and relative yield of their figs. In both sites, figs were eaten by a large proportion of the vertebrate fauna present. However, that frugivores were not equally attracted to each Ficus species provided evidence of Ficus dispersal guilds. Guild membership was determined by differences in fig packaging and presentation, with fig size, colour and height of presentation being the strongest predictors of frugivore attraction. These traits, and therefore guild membership, showed strong phylogenetic associations. Nonetheless, apparent adaptations to seed dispersers were also documented. The differential attraction of frugivores means not only that competition for dispersal agents is reduced between guilds but also that guilds of Ficus species experience markedly different seed dispersal services from the frugivores they attract. These differences occur in terms of the number and diversity of frugivores attracted, the proportion of figs that are eaten by seed- predatory frugivores and the distance, density and heterogeneity of seed rain. Ficus species that attract relatively small subsets of frugivore communities (such as fruit bats, or large arboreal mammals) which are prone to anthropogenic threats face decreased seed dispersal associated with the continuing decline of these frugivores. Dependence for dispersal on subsets of frugivore communities also means that Ficus species differ in their abilities to colonise degraded habitats. A 12 month study of the phenology of fig production in the Bornean field site demonstrated that fig crops are initiated year-round and are thus a valuable resource for fruit-eating animals. However, patterns of fig production were not equal between Ficus species (because of a lack of pollination for some) and, so, the availability of the fig resource varied for the different animal groups attracted to each of the Ficus guilds. Globally, figs are eaten by at least ten percent of all bird species and six percent of all mammal species, many of which are capable of dispersing Ficus seeds. That these frugivores also disperse the seed of many other plant species appears to support the suggestion that Ficus species are of great conservation status. However, the 'keystone resource' epithet applied to figs as a whole need to be re-assessed as I show that, because of fig-frugivore partitioning, Ficus species are not equal resources for vertebrate frugivores. 2 3 TABLE OF CONTENTS ACKNOWLEDGEMENTS i ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES viii LIST OF TABLES x PAPERS ARISING FROM THIS THESIS xii DECLARATION xiii GLOSSARY xiv CHAPTER 1 GENERAL INTRODUCTION 1.1 THE BIOLOGY OF Ficus SPECIES 1 1.2 MUTUALISM AND CO-EVOLUTION 2 1.3 FRUGIVORY AND SEED DISPERSAL 2 1.4 FRUIT SYNDROMES AND ECOLOGICAL GUILDS 3 1.5 THE SCOPE OF THIS THESIS 4 CHAPTER 2 DESCRIPTION OF STUDY SITES 2.1 LAMBIR HILLS NATIONAL PARK, SARAWAK, MALAYSIA 5 2.2 LONG ISLAND, PAPUA NEW GUINEA 5 CHAPTER 3 PACKAGING AND PRESENTATION OF BORNEAN FIGS 3.1 INTRODUCTION 7 3.2 METHODS 7 3.2.1 Sampling 7 3.2.2 Fig design and presentation 8 3.3.3 Data analysis 8 3.3 RESULTS 8 3.3.1 Species studied 8 3.3.2 The diversity of fig design and presentation 9 3.3.3 Associations between
Recommended publications
  • Gibbon Journal Nr
    Gibbon Journal Nr. 5 – May 2009 Gibbon Conservation Alliance ii Gibbon Journal Nr. 5 – 2009 Impressum Gibbon Journal 5, May 2009 ISSN 1661-707X Publisher: Gibbon Conservation Alliance, Zürich, Switzerland http://www.gibbonconservation.org Editor: Thomas Geissmann, Anthropological Institute, University Zürich-Irchel, Universitätstrasse 190, CH–8057 Zürich, Switzerland. E-mail: [email protected] Editorial Assistants: Natasha Arora and Andrea von Allmen Cover legend Western hoolock gibbon (Hoolock hoolock), adult female, Yangon Zoo, Myanmar, 22 Nov. 2008. Photo: Thomas Geissmann. – Westlicher Hulock (Hoolock hoolock), erwachsenes Weibchen, Yangon Zoo, Myanmar, 22. Nov. 2008. Foto: Thomas Geissmann. ©2009 Gibbon Conservation Alliance, Switzerland, www.gibbonconservation.org Gibbon Journal Nr. 5 – 2009 iii GCA Contents / Inhalt Impressum......................................................................................................................................................................... i Instructions for authors................................................................................................................................................... iv Gabriella’s gibbon Simon M. Cutting .................................................................................................................................................1 Hoolock gibbon and biodiversity survey and training in southern Rakhine Yoma, Myanmar Thomas Geissmann, Mark Grindley, Frank Momberg, Ngwe Lwin, and Saw Moses .....................................4
    [Show full text]
  • Bioconcetta Vol.II No.2-Desember DESCRIPTION of the SPECIES of SNAKES on a UNIVERSITY CAMPUS FIELD ANDALAS LIMAU MANIH PADANG
    2016 BioCONCETTA Vol.II No.2-Desember DESCRIPTION OF THE SPECIES OF SNAKES ON A UNIVERSITY CAMPUS FIELD ANDALAS LIMAU MANIH PADANG DESKRIPSI JENIS-JENIS ULAR DI KAMPUS UNIVERSITAS ANDALAS LIMAU MANIH PADANG Fachrul Reza1, Djong Hon Tjong2, Wilson Novarino2 1Program Studi Pendidikan Biologi STKIP PGRI Sumatera Barat. Jl. Gunung Pangilun Padang, Kota Padang, Sumatera Barat, Indonesia. Telp./Fax. (0751) 7053731/ (0751) 7053826. Email: [email protected] 2Jurusan Biologi FMIPA Universitas Andalas Jl. Universitas Andalas, Limau Manis, Kecamatan Pauh, Kota Padang, Sumatera Barat, Indonesia Telp./Fax. (0751) 777427, 71671/ (0751) 71343, 73118. Manuskrip diterima: 08 September 2016, Revisi disetujui: 15 November 2016 ABSTRACT Research on the Snakes Description of Andalas University Limau Manih had been done from April 2009 to March 2010. The research was conducted using survey method and Dissemination of Information to Public accompanied by morphometric measurements and descriptions. This research provide former description from former researcher or author as comparation. The results of the research that had been done caught 20 species with the amount of 40 individual snakes that consist of one suborder Serpentes of the five families namely Colubridae (15 specieses): Ahaetulla prasina prasina (Boie, 1827), Boiga Cynodon (Boie, 1827), Chrysopelea paradisi paradisi Boie, 1827, Dendrelaphis caudolineatus caudolineatus (Gray, 1834), Dendrelaphis formosus (Boie, 1827), Dendrelaphis pictus (Gmelin, 1789), Gonyosoma oxycephalum (Boie, 1827), Liopeltis
    [Show full text]
  • The New Zealand Rain Forest: a Comparison with Tropical Rain Forest! J
    The New Zealand Rain Forest: A Comparison with Tropical Rain Forest! J. W. DAWSON2 and B. V. SNEDDON2 ABSTRACT: The structure of and growth forms and habits exhibited by the New Zealand rain forest are described and compared with those of lowland tropical rain forest. Theories relating to the frequent regeneration failure of the forest dominants are outlined. The floristic affinities of the forest type are discussed and it is suggested that two main elements can be recognized-lowland tropical and montane tropical. It is concluded that the New Zealand rain forest is comparable to lowland tropical rain forest in structure and in range of special growth forms and habits. It chiefly differs in its lower stature, fewer species, and smaller leaves. The floristic similarity between the present forest and forest floras of the Tertiary in New Zealand suggest that the former may be a floristically reduced derivative of the latter. PART 1 OF THIS PAPER describes the structure The approximate number of species of seed and growth forms of the New Zealand rain plants in these forests is 240. From north to forest as exemplified by a forest in the far north. south there is an overall decrease in number of In Part 2, theories relating to the regeneration species. At about 38°S a number of species, of the dominant trees in the New Zealand rain mostly trees and shrubs, drop out or become forest generally are reviewed briefly, and their restricted to coastal sites, but it is not until about relevance to the situation in the study forest is 42°S, in the South Island, that many of the con­ considered.
    [Show full text]
  • 10 Sota3 Chapter 7 REV11
    200 Until recently, quantifying rates of tropical forest destruction was challenging and laborious. © Jabruson 2017 (www.jabruson.photoshelter.com) forest quantifying rates of tropical Until recently, Photo: State of the Apes Infrastructure Development and Ape Conservation 201 CHAPTER 7 Mapping Change in Ape Habitats: Forest Status, Loss, Protection and Future Risk Introduction This chapter examines the status of forested habitats used by apes, charismatic species that are almost exclusively forest-dependent. With one exception, the eastern hoolock, all ape species and their subspecies are classi- fied as endangered or critically endangered by the International Union for Conservation of Nature (IUCN) (IUCN, 2016c). Since apes require access to forested or wooded land- scapes, habitat loss represents a major cause of population decline, as does hunting in these settings (Geissmann, 2007; Hickey et al., 2013; Plumptre et al., 2016b; Stokes et al., 2010; Wich et al., 2008). Until recently, quantifying rates of trop- ical forest destruction was challenging and laborious, requiring advanced technical Chapter 7 Status of Apes 202 skills and the analysis of hundreds of satel- for all ape subspecies (Geissmann, 2007; lite images at a time (Gaveau, Wandono Tranquilli et al., 2012; Wich et al., 2008). and Setiabudi, 2007; LaPorte et al., 2007). In addition, the chapter projects future A new platform, Global Forest Watch habitat loss rates for each subspecies and (GFW), has revolutionized the use of satel- uses these results as one measure of threat lite imagery, enabling the first in-depth to their long-term survival. GFW’s new analysis of changes in forest availability in online forest monitoring and alert system, the ranges of 22 great ape and gibbon spe- entitled Global Land Analysis and Dis- cies, totaling 38 subspecies (GFW, 2014; covery (GLAD) alerts, combines cutting- Hansen et al., 2013; IUCN, 2016c; Max Planck edge algorithms, satellite technology and Insti tute, n.d.-b).
    [Show full text]
  • Gibbon Classification : the Issue of Species and Subspecies
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1988 Gibbon classification : the issue of species and subspecies Erin Lee Osterud Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biological and Physical Anthropology Commons, and the Genetics and Genomics Commons Let us know how access to this document benefits ou.y Recommended Citation Osterud, Erin Lee, "Gibbon classification : the issue of species and subspecies" (1988). Dissertations and Theses. Paper 3925. https://doi.org/10.15760/etd.5809 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. AN ABSTRACT OF THE THESIS OF Erin Lee Osterud for the Master of Arts in Anthropology presented July 18, 1988. Title: Gibbon Classification: The Issue of Species and Subspecies. APPROVED BY MEM~ OF THE THESIS COMMITTEE: Marc R. Feldesman, Chairman Gibbon classification at the species and subspecies levels has been hotly debated for the last 200 years. This thesis explores the reasons for this debate. Authorities agree that siamang, concolor, kloss and hoolock are species, while there is complete lack of agreement on lar, agile, moloch, Mueller's and pileated. The disagreement results from the use and emphasis of different character traits, and from debate on the occurrence and importance of gene flow. GIBBON CLASSIFICATION: THE ISSUE OF SPECIES AND SUBSPECIES by ERIN LEE OSTERUD A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF ARTS in ANTHROPOLOGY Portland State University 1989 TO THE OFFICE OF GRADUATE STUDIES: The members of the Committee approve the thesis of Erin Lee Osterud presented July 18, 1988.
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • Passeriformes: Cisticolidae: Orthotomus) from the Mekong Floodplain of Cambodia
    FORKTAIL 29 (2013): 1–14 http://zoobank.org/urn:lsid:zoobank.org:pub:F1778491-B6EE-4225-95B2-2843B32CBA08 A new species of lowland tailorbird (Passeriformes: Cisticolidae: Orthotomus) from the Mekong floodplain of Cambodia S. P. MAHOOD, A. J. I. JOHN, J. C. EAMES, C. H. OLIVEROS, R. G. MOYLE, HONG CHAMNAN, C. M. POOLE, H. NIELSEN & F. H. SHELDON Based on distinctive morphological and vocal characters we describe a new species of lowland tailorbird Orthotomus from dense humid lowland scrub in the floodplain of the Mekong, Tonle Sap and Bassac rivers of Cambodia. Genetic data place it in the O. atrogularis–O. ruficeps–O. sepium clade. All data suggest that the new species is most closely related to O. atrogularis, from which genetic differences are apparently of a level usually associated with subspecies. However the two taxa behave as biological species, existing locally in sympatry and even exceptionally in syntopy, without apparent hybridisation. The species is known so far from a small area within which its habitat is declining in area and quality. However, although birds are found in a number of small habitat fragments (including within the city limits of Phnom Penh), most individuals probably occupy one large contiguous area of habitat in the Tonle Sap floodplain. We therefore recommend it is classified as Near Threatened on the IUCN Red List. The new species is abundant in suitable habitat within its small range. Further work is required to understand more clearly the distribution and ecology of this species and in particular its evolutionary relationship with O. atrogularis. INTRODUCTION and its major tributaries (Duckworth et al.
    [Show full text]
  • Ecología Alimentaria Del Tepezcuintle (Cuniculus Paca) En Áreas Conservadas Y Transformadas De La Selva Lacandona, Chiapas, México
    Revista Mexicana de Biodiversidad Rev.Mex.Biodivers. 89 (2018): 507-515 Ecología Ecología alimentaria del tepezcuintle (Cuniculus paca) en áreas conservadas y transformadas de la Selva Lacandona, Chiapas, México Foraging ecology of lowland paca (Cuniculus paca) in preserved and transformed areas of the Lacandon rainforest, Chiapas, Mexico Yuriana Martínez-Ceceñas a, *, Eduardo J. Naranjoa, Yann Hénaut b y Arturo Carrillo-Reyes c a El Colegio de la Frontera Sur, Carretera Panamericana y Periférico Sur s/n, 29290 San Cristóbal de Las Casas, Chiapas, México b El Colegio de la Frontera Sur, Avenida Centenario km 5.5, 424, 77014 Chetumal, Quintana Roo, México c Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 47, Caleras Maciel, 29000 Tuxtla Gutiérrez, Chiapas, México *Autor para correspondencia: [email protected] (Y. Martínez-Ceceñas) Recibido: 10 febrero 2017; aceptado: 24 noviembre 2017 Resumen Conocer el efecto de la fragmentación del hábitat y las perturbaciones antrópicas es primordial para comprender los procesos de adaptación de las especies y su persistencia en los ecosistemas. Una especie adaptable a ambientes transformados es el tepezcuintle, Cuniculus paca. En este trabajo se evaluó la actividad de forrajeo, la composición y las variaciones en la dieta del tepezcuintle en 2 sitios: uno conservado y otro transformado en la Selva Lacandona, Chiapas, México. Se caracterizaron y monitorearon por fototrampeo 57 sitios de alimentación (“comederos”), en 31 de los cuales se confirmó el consumo de frutos. Comparando los sitios se encontraron diferencias significativas en el estado y cantidad de frutos y la cobertura del dosel. La dieta del tepezcuintle incluyó frutos de 20 especies de árboles, donde Ceiba pentandra y Castilla elastica fueron nuevos registros para la especie.
    [Show full text]
  • BORNEO: Bristleheads, Broadbills, Barbets, Bulbuls, Bee-Eaters, Babblers, and a Whole Lot More
    BORNEO: Bristleheads, Broadbills, Barbets, Bulbuls, Bee-eaters, Babblers, and a whole lot more A Tropical Birding Set Departure July 1-16, 2018 Guide: Ken Behrens All photos by Ken Behrens TOUR SUMMARY Borneo lies in one of the biologically richest areas on Earth – the Asian equivalent of Costa Rica or Ecuador. It holds many widespread Asian birds, plus a diverse set of birds that are restricted to the Sunda region (southern Thailand, peninsular Malaysia, Sumatra, Java, and Borneo), and dozens of its own endemic birds and mammals. For family listing birders, the Bornean Bristlehead, which makes up its own family, and is endemic to the island, is the top target. For most other visitors, Orangutan, the only great ape found in Asia, is the creature that they most want to see. But those two species just hint at the wonders held by this mysterious island, which is rich in bulbuls, babblers, treeshrews, squirrels, kingfishers, hornbills, pittas, and much more. Although there has been rampant environmental destruction on Borneo, mainly due to the creation of oil palm plantations, there are still extensive forested areas left, and the Malaysian state of Sabah, at the northern end of the island, seems to be trying hard to preserve its biological heritage. Ecotourism is a big part of this conservation effort, and Sabah has developed an excellent tourist infrastructure, with comfortable lodges, efficient transport companies, many protected areas, and decent roads and airports. So with good infrastructure, and remarkable biological diversity, including many marquee species like Orangutan, several pittas and a whole Borneo: Bristleheads and Broadbills July 1-16, 2018 range of hornbills, Sabah stands out as one of the most attractive destinations on Earth for a travelling birder or naturalist.
    [Show full text]
  • Newsletter No. 291 – November 2013
    Newsletter No. 291 – November 2013 OCTOBER MEETING Members’ Night Tips:- Matt Baars talked to us about a problem plaguing File away from the cutting edge, not towards us all … keeping our cutting tools sharp. The it. This helps to avoid injury. requirements are basic – Push the file forward and across the edge. A couple of good quality, reasonably fine files. Small serrations left by the file aid in cutting. They should be sharp and you should feel Stainless steel is not ideal for cutting tools like them cutting the metal of the tool. If they run clippers and secateurs as it will not hold an over it like a glass bottle they are blunt and edge. should be discarded. Files are used on the Carbon steel holds an edge, but will rust. blades of clippers, pruners, secateurs, axes Keep tools in good order and avoid rust by and spades. spraying with WD40 or similar. A diamond sharpening steel for fine finishing Cheap tools usually won’t hold an edge, or of knives. These have small industrial diamond can’t be resharpened. powder imbedded for fine grinding. Whet stone for fine finishing of knives and Benjamin Scheelings has been experimenting with chisels. Lubricate these with oil or kerosene. Australian natives as subjects for bonsai. He brought Emory paper for fine finishing also. Nail a strip along a beautiful little Moreton Bay fig – Ficus to a block of wood for ease of use. macrophylla, a Banksia serrata, and his latest project – a Melaleuca forest! An electric grinding wheel to make larger jobs Benji suggests looking for plants with small leaves to easier – not necessary, but a good tool.
    [Show full text]
  • (2017) Assessing the Vulnerability of Thailand's Forest Birds to Global Change
    ResearchOnline@JCU This file is part of the following work: Sutummawong, Nantida (2017) Assessing the vulnerability of Thailand's forest birds to global change. PhD thesis, James Cook University. Access to this file is available from: https://doi.org/10.4225/28/5ac2dfc16745c Copyright © 2017 Nantida Sutummawong. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] Assessing the vulnerability of Thailand’s forest birds to global change A thesis submitted by Nantida Sutummawong (M.S. (Forestry)) For the degree of Doctor of Philosophy Centre for Tropical Biodiversity and Climate Change College of Science and Engineering James Cook University July 2017 In Remembrance of His Majesty King Bhumibol Adulyadej 1927 - 2016 Acknowledgements I would like to thank a number of people from James Cook University, without whom, the completion of this work would not have been possible. Firstly, I would like to thank my supervisors: Professor Steve Williams and Dr Alex Anderson for their ideas, enthusiasm, patience, edit, support and advice. Especially, I would like to thank Steve for great advices on the fieldwork, giving me advices about my research sites in Thailand, providing me good foods during my study, extreme patience, and everything. I would like to give an enormous thank to Alex for helping me on fieldwork which we had a great time with six Leopards in one day after a day of treacherous flooding and thank for thoughtful comments, helpful ideas, and meditation class in the beautiful village in France that I have never know before.
    [Show full text]
  • (Moraceae) and the Position of the Genus Olmedia R. & P
    On the wood anatomy of the tribe “Olmedieae” (Moraceae) and the position of the genus Olmedia R. & P. Alberta+M.W. MennegaandMarijke Lanzing-Vinkenborg Instituut voorSystematische Plantkunde,Utrecht SUMMARY The structure ofthe wood ofthe Olmedia genera Castilla, Helicostylis, Maquira, Naucleopsis, , Perebeaand Pseudolmedia,considered to belongin the Olmedieae (cf. Berg 1972) is described. The in anatomical between the is and it is hard to diversity structure genera small, distinguish Maquira, Perebea and Pseudolmedia from each other. Castilla can be recognized by its thin- walled and wide-lumined fibres, Helicostylis by its parenchyma distribution, Naucleopsis (usually) by its more numerous vessels with a smaller diameter. A more marked difference is shown the Olmedia with banded instead of by monotypic genus apotracheal parenchyma the aliform confluent-banded of the other paratracheal to parenchyma genera. Septate which characteristic for the other - of fibres, are genera some species Helicostylis excepted - are nearly completely absent in Olmedia. This structural difference is considered as an in of the exclusion Olmedia from tribe Olmedieae argument favour of the (Berg 1977). 1. INTRODUCTION The structure of the secondary wood of the Moraceae shows in comparison to that of other families rather uniform This is true many a pattern. particularly for most genera of the tribe Olmedieae. Differences are mainly found in size and numberof vessels, absence of fibres, and in the distribu- or presence septate tion and quantity ofaxial parenchyma. Besides the description of the Moraceae have Tippo’s in Metcalfe& Chalk’s Anatomy ofthe Dicotyledons (1950), we the and of the American (1938) account of family a treatment genera by Record & Hess (1940).
    [Show full text]