Solar Thermal Energy Systems for Building Integration

Total Page:16

File Type:pdf, Size:1020Kb

Solar Thermal Energy Systems for Building Integration Solar thermal energy systems for building integration Helena Gajbert Division of Energy and Building Design Department of Architecture and Built Environment Lund University Faculty of Engineering LTH, 2008 Report EBD-T--08/10 Lund University Lund University, with eight faculties and a number of research centres and specialized institutes, is the largest establishment for research and higher education in Scandinavia. The main part of the University is situated in the small city of Lund which has about 105 000 inhabitants. A number of departments for research and education are, however, located in Malmö. Lund University was founded in 1666 and has today a total staff of 6 000 employees and 42 500 students attending 90 degree programmes and 1 000 subject courses offered by 74 departments. Division of Energy and Building Design Reducing environmental effects of construction and facility management is a central aim of society. Minimising the energy use is an important aspect of this aim. The recently established division of Energy and Building Design belongs to the department of Architecture and Built Environment at the Lund University, Faculty of Engineering LTH in Sweden. The division has a focus on research in the fi elds of energy use, passive and active solar design, daylight utilisation and shading of buildings. Effects and requi- rements of occupants on thermal and visual comfort are an essential part of this work. Energy and Building Design also develops guidelines and methods for the planning process. xxxxx Solar thermal energy systems for building integration Helena Gajbert Licentiate thesis 1 Solar thermal energy systems for building integration Keywords building integration, concentrating collector, incidence angle dependence, optical effi ciency, parabolic refl ector, photovoltaic- thermal system, solar collector, solar simulator, solar thermal energy, solar thermal system, thermal performance. © copyright Helena Gajbert and Division of Energy and Building Design. Lund University, Lund Institute of Technology, Lund 2008. The English language corrected by L. J. Gruber BSc(Eng) MICE MIStructE. Layout: Hans Follin, LTH, Lund. Cover photo: Helena Gajbert, Bengt Perers and Martin Råberg Printed by KFS AB, Lund 2008 Report No EBD-T--08/10 Solar thermal energy systems for building integration. Department of Architecture and Built Environment, Division of Energy and Building Design, Lund University, Lund ISSN 1651-8136 ISBN 978-91-85147-29-8 Lund University, Lund Institute of Technology Department of Architecture and Built Environment Division of Energy and Building Design Telephone: +46 46 - 222 73 52 P.O. Box 118 Telefax: +46 46 - 222 47 19 SE-221 00 LUND E-mail: [email protected] Sweden Home page: www.ebd.lth.se 2 Abstract Abstract Solar thermal energy has the potential to make a signifi cant contribution to the energy supply for space heating and hot water production, even in locations at higher latitudes, and in this way to reduce the use of fossil fuels. It is therefore very important to increase the use of this technology. By integrating solar collectors into building envelopes, the cost ef- fectiveness of the collectors can be increased, as building material and labour costs can be reduced. By also using concentrating refl ectors the cost effectiveness can be further increased. The aim of this work is to identify cost effective design criteria for building integrated solar collectors and solar thermal systems. It is hoped that the outcome will give guidance and inspiration to product develop- ers, architects, designers and constructors and thereby help boost the solar thermal market and increase the use of solar thermal systems. The presented work includes an investigation of solar thermal systems for highly insulated buildings, performed for the International Energy Agency, Solar Heating and Cooling Programme, Task 28, in which solar thermal systems are designed for apartment buildings at high latitudes. Design advice is given based on Polysun simulations and parametric studies of various design parameters. Special attention was paid to dimensioning of the collector area to avoid overheating. The thermal performance of three designs of collectors for non-insulated roofs with cold attics underneath has been evaluated from measurments. The idea is to produce a thin, cheep and fl exible roof-integrated collector for easy installation. The results show that the annual thermal energy yield would be 320, 330 and 280 kWh/m2 respectively for the three collectors A, B and C, at 50°C operating temperature. The corresponding yield per absorber area is 360, 680 and 1140 kWh/m2 respectively. As the material costs should be low, there is a potential for the production of these solar collectors, Collector B in particular, as cost effective building elements. However, further investigations for improved effi ciency are suggested. The characteristics of a solar simulator have been investigated in order to show how suitable it is for use as a light source for indoor measure- ments of concentrating collectors for evaluation of their incidence angle 3 Solar thermal energy systems for building integration dependence. It is here concluded that accurate results can be achieved for lower angles of incidence but for higher angles, above 35°-40°, outdoor measurements are more reliable. A large solar thermal system, with façade-integrated collectors in sev- eral directions, connected to the fl ow side of the district heating grid in Malmö, Sweden, has been studied, e.g. from measured data, and described. WINSUN simulations were performed to validate that the plant works as expected, which was confi rmed by the results. The simulated annual output of 174 kWh/m²a from the system agreed well with the measured output, 180 kWh/m2a. The results from each of the collectors are also described and a small parametric study is given. The good accuracy of these results implies that WINSUN and Meteonorm data can be used for relatively good estimations of a complex system design when climate data is unavailable. The geometrical design of a concentrating PV/thermal hybrid collector for integration in a wall element is optimised for maximal energy output by short circuit current measurements of thin fi lm photovoltaic cells and MINSUN simulations. The results show that the annual energy output could increase from 70 kWh/m2 for a vertical reference cell to 120 kWh/m2 absorber area. Results for a number of geometries are presented. 4 Table of contents Table of contents Keywords 2 Abstract 3 Table of contents 5 Preface 9 List of symbols 11 List of papers 15 1 Introduction 17 1.1 Background 17 1.2 Objectives 18 1.3 Outline 19 2 Theoretical background 21 2.1 Solar thermal market development 21 2.1.1 Historic development 21 2.1.2 Recent development 22 2.2 Solar irradiation 24 2.3 Solar angles 27 2.4 Heat transfer and thermal performance of solar collectors 32 2.4.1 Irradiance 33 2.4.2 Optical losses 34 2.4.3 Thermal heat losses from the collector 36 2.4.4 Evaluation of thermal performance from measured data 37 2.5 Optical concentration of light 38 2.5.1 Parabolic refl ectors 39 2.5.2 The involute 43 2.5.3 Incidence angle dependence for concentrating collectors 45 2.5.4 Refl ector material 47 2.6 Concentrating hybrid PV/thermal collectors 47 2.7 Building integration of solar collectors 48 3 Measurement techniques 51 3.1 Measurement set-up 51 3.1.1 Outdoor measurements using the test rig 51 3.1.2 Long-term outdoor measurements at the Älvkarleby test facility 55 3.1.3 Early measurements 56 5 Solar thermal energy systems for building integration 3.2 Measuring equipment 59 3.2.1 The solar simulator 59 3.2.2 Measurements of irradiance 61 3.2.3 The solar collector test rig 62 3.2.4 Temperature measurements 65 3.2.5 Flow rate 68 3.2.6 Data logger system 68 3.3 Computer programs 69 3.3.1 The MINSUN simulation tool 69 3.3.2 WINSUN 70 3.3.3 Polysun 70 4 Solar thermal systems in high performance houses 73 4.1 Introduction 73 4.2 Active use of solar thermal energy 74 4.2.1 Solar thermal system designs 74 4.2.2 Collector types 78 4.2.3 Tank location 79 4.2.4 Regional design differences 80 4.3 Design of solar heating systems 81 4.3.1 Introduction 81 4.3.2 The cold climate apartment reference building 84 4.3.3 Design solution 1a – Conservation strategy: A solar DHW system for an extremely well insulated building 84 4.3.4 Design solution 2 - Renewable energy strategy: A solar thermal system for DHW and space heating, 86 4.3.5 Sensitivity analysis of the solar system for Solution 2 91 4.3.6 Comparison between the different solutions 105 4.4 Conclusions 107 5 Solar collectors for integration on non-insulated roofs 111 5.1 Introduction 111 5.2 The collector designs 112 5.2.1 Collector A 112 5.2.2 Collector B 113 5.2.3 Collector C 114 5.2.4 Orientation 116 5.3 Experimental work and evaluations 117 5.3.1 Long-term measurements and MLR 117 5.3.2 Model accuracy 118 5.3.3 Thermal inertia of the collectors 122 5.3.4 Monitoring of effi ciency graphs 124 5.3.5 Longitudinal incidence angle dependence 126 5.3.6 Incidence angle dependence in the transverse plane 129 5.3.7 Ray tracing simulations 132 5.3.8 MINSUN simulations of annual energy output 137 5.4 Conclusions 138 6 Table of contents 6 Evaluation of solar simulator performance 141 6.1 Introduction 141 6.2 The solar simulator light distribution 142 6.3 The photodiode array 143 6.4 Measurements of concentrating collectors 144 6.4.1 The roof collector of corrugated steel 144 6.4.2 The roof MaReCo 144 6.5 Conclusions 148 7 Building integrated solar collectors
Recommended publications
  • Solar Energy: State of the Art
    Downloaded from orbit.dtu.dk on: Sep 27, 2021 Solar energy: state of the art Furbo, Simon; Shah, Louise Jivan; Jordan, Ulrike Publication date: 2003 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Furbo, S., Shah, L. J., & Jordan, U. (2003). Solar energy: state of the art. BYG Sagsrapport No. SR 03-14 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Editors: Simon Furbo Louise Jivan Shah Ulrike Jordan Solar Energy State of the art DANMARKS TEKNISKE UNIVERSITET Internal Report BYG·DTU SR-03-14 2003 ISSN 1601 - 8605 Solar Energy State of the art Editors: Simon Furbo Louise Jivan Shah Ulrike Jordan Department of Civil Engineering DTU-bygning 118 2800 Kgs. Lyngby http://www.byg.dtu.dk 2003 PREFACE In June 2003 the Ph.D. course Solar Heating was carried out at Department of Civil Engineering, Technical University of Denmark.
    [Show full text]
  • Thermal Mass
    Thermal Mass • What is Thermal Mass? • Types of Thermal Mass • Historical Applications • Thermal Properties of Materials • Analyzing Heat/Cool Storage • Strategies • Other Factors • Computer Analysis • Bibliography Thermal Mass • Thermal mass refers to materials have the capacity to store thermal energy for extended periods. • Thermal mass can be used effectively to absorb daytime heat gains (reducing cooling load) and release the heat during the night (reducing heat load). Types of Thermal Mass • Traditional types of thermal mass include water, rock, earth, brick, concrete, fibrous cement, caliche, and ceramic tile. • Phase change materials store energy while maintaining constant temperatures, using chemical bonds to store & release latent heat. PCM’s include solid-liquid Glauber’s salt, paraffin wax, and the newer solid-solid linear crystalline alkyl hydrocarbons (K-18: 77oF phase transformation temperature). PCM’s can store five to fourteen times more heat per unit volume than traditional materials. (source: US Department of Energy). Historical Applications • The use of thermal mass in shelter dates back to the dawn of humans, and until recently has been the prevailing strategy for building climate control in hot regions. Egyptian mud-brick storage rooms (3200 years old). The lime-pozzolana (concrete) Roman Pantheon Today, passive techniques such as thermal mass are ironically considered “alternative” methods to mechanical heating and cooling, yet the appropriate use of thermal mass offers an efficient integration of structure and thermal services. Thermal Properties of Materials The basic properties that indicate the thermal behavior of materials are: density (p), specific heat (cm), and conductivity (k). The specific heat for most masonry materials is similar (about 0.2-0.25Wh/kgC).
    [Show full text]
  • Criteria and Guidelines for Product and System Developers
    D E S I G N I N G S O L A R T H E R M A L S Y S T E M S F O R A R C H I T E C T U R A L I N T E G R A T I O N criteria and guidelines for product and system developers T.41.A.3/1 Task 41 ‐ Solar energy & Architecture ‐ International Energy Agency ‐ Solar Heating and Cooling Programme Report T.41.A.3/1: IEA SHC Task 41 Solar Energy and Architecture DESIGNING SOLAR THERMAL SYSTEMS FOR ARCHITECTURAL INTEGRATION Criteria and guidelines for product and system developers Keywords Solar energy, architectural integration, solar thermal, active solar systems, solar buildings, solar architecture, solar products, innovative products, building integrability. Editors: MariaCristina Munari Probst Christian Roecker November 2013 T.41.A.3/1 IEA SHC Task 41 I Designing solar thermal systems for architectural integration AUTHORS AND CONTRIBUTORS AFFILIATIONS Maria Cristina Munari Probst Christian Roecker (editor, author) (editor, author) EPFL‐LESO EPFL‐LESO Bâtiment LE Bâtiment LE Station 18 Station 18 CH‐1015 Lausanne CH‐1015 Lausanne SWITZERLAND SWITZERLAND [email protected] [email protected] Alessia Giovanardi Marja Lundgren Maria Wall - Operating agent (contributor) (contributor) (contributor) EURAC research, Institute for White Arkitekter Energy and Building Design Renewable Energy P.O. Box 4700 Lund University Universitá degli Studi di Trento Östgötagatan 100 P.O. Box 118 Viale Druso 1 SE‐116 92 Stockholm SE‐221 00 Lund SWEDEN I‐39100 Bolzano, ITALY SWEDEN [email protected] [email protected] [email protected] 1 T.41.A.3/1 IEA SHC Task 41 I Designing solar thermal systems for architectural integration 2 T.41.A.3/1 IEA SHC Task 41 I Designing solar thermal systems for architectural integration ACKNOWLEDGMENTS The authors are grateful to the International Energy Agency for understanding the importance of this subject and accepting to initiate a Task on solar energy and architecture.
    [Show full text]
  • A Review of Building Integrated Solar Thermal (Bist)
    enewa f R bl o e ls E a n t e n r e g Journal of y m a a n d d Zhang et al., n u A J Fundam Renewable Energy Appl 2015, 5:5 F p f p Fundamentals of Renewable Energy o l i l ISSN: 2090-4541c a a DOI: 10.4172/2090-4541.1000182 n t r i o u n o s J and Applications Review Article Open Access Building Integrated Solar Thermal (BIST) Technologies and Their Applications: A Review of Structural Design and Architectural Integration Xingxing Zhang*1, Jingchun Shen1, Llewellyn Tang*1, Tong Yang1, Liang Xia1, Zehui Hong1, Luying Wang1, Yupeng Wu2, Yong Shi1, Peng Xu3 and Shengchun Liu4 1Department of Architecture and Built Environment, University of Nottingham, Ningbo, China 2Department of Architecture and Built Environment, University of Nottingham, UK 3Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, China 4Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, China Abstract Solar energy has enormous potential to meet the majority of present world energy demand by effective integration with local building components. One of the most promising technologies is building integrated solar thermal (BIST) technology. This paper presents a review of the available literature covering various types of BIST technologies and their applications in terms of structural design and architectural integration. The review covers detailed description of BIST systems using air, hydraulic (water/heat pipe/refrigerant) and phase changing materials (PCM) as the working medium. The fundamental structure of BIST and the various specific structures of available BIST in the literature are described.
    [Show full text]
  • The Wind-Catcher, a Traditional Solution for a Modern Problem Narguess
    THE WIND-CATCHER, A TRADITIONAL SOLUTION FOR A MODERN PROBLEM NARGUESS KHATAMI A submission presented in partial fulfilment of the requirements of the University of Glamorgan/ Prifysgol Morgannwg for the degree of Master of Philosophy August 2009 I R11 1 Certificate of Research This is to certify that, except where specific reference is made, the work described in this thesis is the result of the candidate’s research. Neither this thesis, nor any part of it, has been presented, or is currently submitted, in candidature for any degree at any other University. Signed ……………………………………… Candidate 11/10/2009 Date …………………………………....... Signed ……………………………………… Director of Studies 11/10/2009 Date ……………………………………… II Abstract This study investigated the ability of wind-catcher as an environmentally friendly component to provide natural ventilation for indoor environments and intended to improve the overall efficiency of the existing designs of modern wind-catchers. In fact this thesis attempts to answer this question as to if it is possible to apply traditional design of wind-catchers to enhance the design of modern wind-catchers. Wind-catchers are vertical towers which are installed above buildings to catch and introduce fresh and cool air into the indoor environment and exhaust inside polluted and hot air to the outside. In order to improve overall efficacy of contemporary wind-catchers the study focuses on the effects of applying vertical louvres, which have been used in traditional systems, and horizontal louvres, which are applied in contemporary wind-catchers. The aims are therefore to compare the performance of these two types of louvres in the system. For this reason, a Computational Fluid Dynamic (CFD) model was chosen to simulate and study the air movement in and around a wind-catcher when using vertical and horizontal louvres.
    [Show full text]
  • Characterization and Energy Performance of a Slurry PCM-Based Solar Thermal Collector: a Numerical Analysis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PORTO Publications Open Repository TOrino Politecnico di Torino Porto Institutional Repository [Article] Characterization and energy performance of a slurry PCM-based solar thermal collector: a numerical analysis Original Citation: Serale G.; Baronetto S.; Goia F.; Perino M. (2014). Characterization and energy performance of a slurry PCM-based solar thermal collector: a numerical analysis. In: ENERGY PROCEDIA, vol. 48, pp. 223-232. - ISSN 1876-6102 Availability: This version is available at : http://porto.polito.it/2592626/ since: February 2015 Publisher: Elsevier Published version: DOI:10.1016/j.egypro.2014.02.027 Terms of use: This article is made available under terms and conditions applicable to Open Access Policy Article ("Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0") , as described at http: //porto.polito.it/terms_and_conditions.html Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters. Publisher copyright claim: This is the publisher’s version of a proceedings published on [pin missing: event_title], Publisher [pin missing: publisher], Vol 48 , Number UNSPECIFIED Year 2014 (ISSN epc:pin name ="issn"/> - ISBN [pin missing: isbn] )The present version is accessible on PORTO, the Open Access Repository of the Politecnico of Torino
    [Show full text]
  • Ecology Design
    ECOLOGY and DESIGN Ecological Literacy in Architecture Education 2006 Report and Proposal The AIA Committee on the Environment Cover photos (clockwise) Cornell University's entry in the 2005 Solar Decathlon included an edible garden. This team earned second place overall in the competition. Photo by Stefano Paltera/Solar Decathlon Students collaborating in John Quale's ecoMOD course (University of Virginia), which received special recognition in this report (see page 61). Photo by ecoMOD Students in Jim Wasley's Green Design Studio and Professional Practice Seminar (University of Wisconsin-Milwaukee) prepare to present to their client; this course was one of the three Ecological Literacy in Architecture Education grant recipients (see page 50). Photo by Jim Wasley ECOLOGY and DESIGN Ecological by Kira Gould, Assoc. AIA Literacy in Lance Hosey, AIA, LEED AP Architecture with contributions by Kathleen Bakewell, LEED AP Education Kate Bojsza, Assoc. AIA 2006 Report Peter Hind , Assoc. AIA Greg Mella, AIA, LEED AP and Proposal Matthew Wolf for the Tides Foundation Kendeda Sustainability Fund The contents of this report represent the views and opinions of the authors and do not necessarily represent the opinions of the American Institute of Architects (AIA). The AIA supports the research efforts of the AIA’s Committee on the Environment (COTE) and understands that the contents of this report may reflect the views of the leadership of AIA COTE, but the views are not necessarily those of the staff and/or managers of the Institute. The AIA Committee
    [Show full text]
  • Solar Thermal Collector Component for High-Resolution Stochastic Bottom-Up Domestic Energy Demand Models
    322: Solar Thermal Collector Component for High-resolution Stochastic Bottom-up Domestic Energy Demand Models Paul H ENSHALL , Eoghan M CKENNA , Murray THOMSON , Philip E AMES Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, LE11 3TU, UK. [email protected] High-resolution stochastic ‘bottom-up’ domestic energy demand models can be used to assess the impact of low- carbon technologies, and can underpin energy analyses of aggregations of dwellings. The domestic electricity demand model developed by Loughborough University has these features and accounts for lighting, appliance usage, and photovoltaic micro-generation. Work is underway at Loughborough to extend the existing model into an integrated thermal-electrical domestic demand model that can provide a suitable basis for modelling the impact of low-carbon heating technologies. This paper describes the development of one of the new components of the integrated model: a solar thermal collector model that provides domestic hot water to the dwelling. The paper describes the overall architecture of the solar thermal model and how it integrates with the broader thermal model, and includes a description of the control logic and thermal-electrical equivalent network used to model the solar collector heat output. Keywords: Solar thermal collector, domestic, energy demand, dynamic. 14 th International Conference on Sustainable Energy Technologies – SET 2015 25 th - 27 th of August 2015, Nottingham, UK 1. INTRODUCTION Urban areas currently use over two-thirds of the world’s energy and account for over 70% of global greenhouse gas emissions (International Energy Agency 2008). Furthermore, increasing urbanisation means that the proportion of the population living in urban areas is expected to rise from around 50% today to more than 60% in 2030, with urban energy use and emissions expected to rise as a consequence.
    [Show full text]
  • A Concentrated Solar Thermal Energy System C
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 A Concentrated Solar Thermal Energy System C. Christopher Newton Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY FAMU-FSU COLLEGE OF ENGINEERING A CONCENTRATED SOLAR THERMAL ENERGY SYSTEM By C. CHRISTOPHER NEWTON A Thesis submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2007 Copyright 2007 C. Christopher Newton All Rights Reserved The members of the Committee approve the Thesis of C. Christopher Newton defended on December 14, 2006. ______________________________ Anjaneyulu Krothapalli Professor Directing Thesis ______________________________ Patrick Hollis Outside Committee Member ______________________________ Brenton Greska Committee Member The Office of Graduate Studies has verified and approved the above named committee members. ii This thesis is dedicated to my family and friends for their love and support. iii ACKNOWLEDGEMENTS I would like to thank Professor Anjaneyulu Krothapalli and Dr. Brenton Greska for their advisement and support of this work. Through their teachings, my view on life and the world has changed. I would also like to give special thanks to Robert Avant and Bobby DePriest for their help with the design and fabrication of the apparatus used for this work. Also, I would like to thank them for teaching myself, the author, the basics of machining. Mike Sheehan and Ryan Whitney also deserve mention for their help with setting up and assembling the apparatus used in this work. The help and support from each of these individuals mentioned was, and will always be greatly appreciated.
    [Show full text]
  • Solar Energy Perspectives
    Solar Energy TECHNOLOGIES Perspectives Please note that this PDF is subject to specific restrictions that limit its use and distribution. The terms and conditions are available online at www.iea.org/about/copyright.asp Renewable Energy Renewable Solar Energy Renewable Energy Perspectives In 90 minutes, enough sunlight strikes the earth to provide the entire planet's energy needs for one year. While solar energy is abundant, it represents a tiny Technologies fraction of the world’s current energy mix. But this is changing rapidly and is being driven by global action to improve energy access and supply security, and to mitigate climate change. Technologies Solar Around the world, countries and companies are investing in solar generation capacity on an unprecedented scale, and, as a consequence, costs continue to fall and technologies improve. This publication gives an authoritative view of these technologies and market trends, in both advanced and developing Energy economies, while providing examples of the best and most advanced practices. It also provides a unique guide for policy makers, industry representatives and concerned stakeholders on how best to use, combine and successfully promote the major categories of solar energy: solar heating and cooling, photovoltaic Technologies Solar Energy Perspectives Solar Energy Perspectives and solar thermal electricity, as well as solar fuels. Finally, in analysing the likely evolution of electricity and energy-consuming sectors – buildings, industry and transport – it explores the leading role solar energy could play in the long-term future of our energy system. Renewable Energy (61 2011 25 1P1) 978-92-64-12457-8 €100 -:HSTCQE=VWYZ\]: Renewable Energy Renewable Renewable Energy Technologies Energy Perspectives Solar Renewable Energy Renewable 2011 OECD/IEA, © INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA), an autonomous agency, was established in November 1974.
    [Show full text]
  • Solar Cooling Used for Solar Air Conditioning - a Clean Solution for a Big Problem
    Solar Cooling Used for Solar Air Conditioning - A Clean Solution for a Big Problem Stefan Bader Editor Werner Lang Aurora McClain csd Center for Sustainable Development II-Strategies Technology 2 2.10 Solar Cooling for Solar Air Conditioning Solar Cooling Used for Solar Air Conditioning - A Clean Solution for a Big Problem Stefan Bader Based on a presentation by Dr. Jan Cremers Figure 1: Vacuum Tube Collectors Introduction taics convert the heat produced by solar energy into electrical power. This power can be “The global mission, these days, is an used to run a variety of devices which for extensive reduction in the consumption of example produce heat for domestic hot water, fossil energy without any loss in comfort or lighting or indoor temperature control. living standards. An important method to achieve this is the intelligent use of current and Photovoltaics produce electricity, which can be future solar technologies. With this in mind, we used to power other devices, such as are developing and optimizing systems for compression chillers for cooling buildings. architecture and industry to meet the high While using the heat of the sun to cool individual demands.” Philosophy of SolarNext buildings seems counter intuitive, a closer look AG, Germany.1 into solar cooling systems reveals that it might be an efficient way to use the energy received When sustainability is discussed, one of the from the sun. On the one hand, during the time first techniques mentioned is the use of solar that heat is needed the most - during the energy. There are many ways to utilize the winter months - there is a lack of solar energy.
    [Show full text]
  • Reference System, Germany Solar Combisystem for Multi-Family House INFO Sheet a 10
    Reference System, Germany Solar Combisystem for Multi-Family House INFO Sheet A 10 Definition of reference solar combi system for multifamily houses (MFH), Description: Germany Date: July 2018 Authors: Sonja Helbig (ISFH), Oliver Mercker (ISFH), Federico Giovannetti (ISFH) Download possible at: http://task54.iea-shc.org/ Introduction This document describes the reference solar combi system for domestic hot water preparation and space heating in multifamily houses (MFH) in Germany. The system is modelled with TRNSYS to calculate the fuel consumption and electric energy needed to provide the required domestic hot water and space heating as well as the substituted fuel provided by the combi system. Using these results the levelized cost of heat (LCOH) for the substituted fuel is calculated using eq. 1 and the reference costs for the investment of the system, installation, fuel and electricity costs. System model and cost assumptions are based on [1] and [2]. Hydraulic Scheme of the System Key data Collector area 33 m² Heat store volume 1500 l Location/ Wuerzburg, weather data Germany Hemispherical Ghem,hor irradiance on =1120 kWh/(m2 a) horizontal surface Lifetime of system 25 years Levelized Cost of Heat (LCoH) LCoHsol,fin solar part without VAT 0.112 € LCoHconv,fin conventional part without VAT 0.103 € LCoHov,fin complete system without VAT 0.105 € 1 Reference System, Germany Solar Combisystem for Multi-Family House INFO Sheet A 10 Details of the System Location Wuerzburg, Germany Type of system Combisystem Weather data TRY 2 - hemispherical
    [Show full text]