Technical Study Report on Solar Thermal Technology LCIA Methods and LCC Models
Total Page:16
File Type:pdf, Size:1020Kb
U NITED N ATIONS E NVIRONMENT P ROGRAMME AND LCC MODELS AND LCC METHODS LCIA TECHNOLOGY SOLARON THERMAL REPORT STUDY TECHNICAL UNEP Technical study report on solar thermal technology LCIA methods and LCC models Copyright © United Nations Environment Programme, 2015 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Disclaimer The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations Environment Programme concerning the legal status of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. Moreover, the views expressed do not necessarily represent the decision or the stated policy of the United Nations Environment Programme, nor does citing of trade names or commercial processes constitute endorsement. Cover picture courtesy of BSW-Solar 2 UNEP Technical study report on solar thermal technology LCIA methods and LCC models ACKNOWLEDGEMENTS SUPERVISION AND COORDINATION Amr Abdelhai, Programme Officer, UNEP Division of Technology, Industry and Economics Pedro Dias, European Solar Thermal Industry Federation (ESTIF) LEAD AUTHOR Björn Ehrismann; ITW - Institut für Thermodynamik und Wärmetechnik Universität Stuttgart CONTRIBUTING AUTHORS Harald Drück, ITW - Institut für Thermodynamik und Wärmetechnik Universität Stuttgart 3 UNEP Technical study report on solar thermal technology LCIA methods and LCC models SUMMARY Solar thermal suffers in the market, the media and in the policy arena, because solar thermal energy is often not accounted for, and amounts of solar thermal heat are not transparently measured and displayed. This also leads to problems/malfunctions not being spotted quickly. This “Technical study report on solar thermal technology LCIA methods and LCC models” aims at contributing to the demonstration of the advantages of solar thermal systems, taking the lifecycle into account. This means assessing both environmental and economic benefits of the systems over their operation period. These methods allow to exemplify the diverse benefits of this technology during the lifecycle of a system, in spite of high upfront investments costs. In order to establish reliability and comparability of life cycle assessment a comprehensive set of rules has been defined within international standards regarding life cycle assessment and life cycle costing. In Chapter Life cycle assessment (LCA) – Fundamentals and definitions of this report the fundamentals and definitions of these rules of life cycle assessment are given. The life cycle of a product may have impact in different areas. In order to distinguish and quantify them, impact categories have been defined which are described in chapter Available impact categories. Chapter Available Life Cycle Impact Assessment (LCIA) methods gives an overview on available life cycle impact assessment methods. It is described how these methods make use of the previously described impact categories and how they differ in purpose and complexity. Chapter LCIA methods applied in LCA of solar thermal systems is a compilation and evaluation of life cycle assessment studies of solar thermal systems with a focus on the applied life cycle impact assessment methods. In Chapter Life Cycle Costing (LCC) analysis is described with a focus on the application on solar thermal technologies and buildings using solar thermal supply systems. This “Technical study report on solar thermal technology LCIA methods and LCC models” was developed as part of the Global Solar Water Heating (GSWH) Market Transformation and Strengthening Initiative (GSWH Project), and as a result of a joint effort between The European Solar Thermal Industry Federation (ESTIF) and the United Nations Environment Programme (UNEP) through its Division of Technology, Industry and Economics (DTIE) and the Global Environment Fund (GEF). Funded by the Global Environment Fund (GEF), the GSWH project’s main goal is to accelerate the global commercialization and sustainable market transformation of SWH, thereby reducing the current use of electricity and fossil fuels for hot water preparation. It will build on the encouraging market development rates already achieved in some GEF programme countries and seek to further expand the market in others where the potential and necessary prerequisites for market uptake seem to exist. 4 UNEP Technical study report on solar thermal technology LCIA methods and LCC models CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 3 SUMMARY ............................................................................................................................................................. 4 CONTENTS ............................................................................................................................................................ 5 INTRODUCTION ................................................................................................................................................... 7 LIFE CYCLE ASSESSMENT (LCA) – FUNDAMENTALS AND DEFINITIONS ........................................... 7 2.1 Fundamentals .................................................................................................................................... 7 Goal and scope definition ................................................................................................................ 7 Inventory analysis............................................................................................................................ 8 Impact Assessment ........................................................................................................................... 8 Interpretation .................................................................................................................................. 9 2.2 Definitions ......................................................................................................................................... 9 AVAILABLE IMPACT CATEGORIES ............................................................................................................... 12 3.1 Resource Depletion ......................................................................................................................... 13 3.2 Land Use .......................................................................................................................................... 13 3.3 Climate Change................................................................................................................................ 13 3.4 Stratospheric ozone (layer) depletion ........................................................................................... 14 3.5 Human toxicity ................................................................................................................................ 14 3.6 Ecotoxicity ....................................................................................................................................... 14 3.7 Photochemical oxidant formation ................................................................................................. 14 3.8 Acidification .................................................................................................................................... 15 3.9 Eutrophication ................................................................................................................................ 15 3.10 Ionizing radiation ............................................................................................................................ 15 3.11 Particulate matter formation (Respiratory inorganics) ............................................................... 16 3.12 Others .............................................................................................................................................. 16 AVAILABLE LIFE CYCLE IMPACT ASSESSMENT (LCIA) METHODS ..................................................... 17 4.1 CML 2001......................................................................................................................................... 17 4.2 Cumulative Energy Demand (CED) ................................................................................................ 20 4.3 Cumulative Exergy Demand (CExD) .............................................................................................. 21 4.4 Eco-Indicator 99.............................................................................................................................. 22 4.5 Ecosystem Damage Potential (EDP) .............................................................................................. 26 4.6 Ecological Footprint ........................................................................................................................ 27 4.7 Ecological Scarcity Method 2006 ..................................................................................................