System Management BIOS (SMBIOS) Reference Specification DSP0134

Total Page:16

File Type:pdf, Size:1020Kb

System Management BIOS (SMBIOS) Reference Specification DSP0134 1 2 Document Identifier: DSP0134 3 Date: 2020-07-17 4 Version: 3.4.0 5 System Management BIOS (SMBIOS) Reference 6 Specification 7 Supersedes: 3.3.0 8 Document Class: Normative 9 Document Status: Published 10 Document Language: en-US 11 System Management BIOS (SMBIOS) Reference Specification DSP0134 12 Copyright Notice 13 Copyright © 2000, 2002, 2004–2020 DMTF. All rights reserved. 14 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 15 management and interoperability. Members and non-members may reproduce DMTF specifications and 16 documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 17 time, the particular version and release date should always be noted. 18 Implementation of certain elements of this standard or proposed standard may be subject to third party 19 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 20 to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 21 or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 22 inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 23 any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 24 disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 25 incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 26 party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 27 owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 28 withdrawn or modified after publication, and shall be indemnified and held harmless by any party 29 implementing the standard from any and all claims of infringement by a patent owner for such 30 implementations. 31 For information about patents held by third-parties which have notified the DMTF that, in their opinion, 32 such patent may relate to or impact implementations of DMTF standards, visit 33 http://www.dmtf.org/about/policies/disclosures.php. 34 This document’s normative language is English. Translation into other languages is permitted. 2 Published Version 3.4.0 DSP0134 System Management BIOS (SMBIOS) Reference Specification 35 CONTENTS 36 Foreword ..................................................................................................................................................... 10 37 Introduction.................................................................................................................................................. 11 38 Document conventions ........................................................................................................................ 11 39 Typographical conventions ....................................................................................................... 11 40 Document version number conventions ................................................................................... 11 41 1 Scope .................................................................................................................................................. 15 42 1.1 Supported processor architectures ........................................................................................... 15 43 2 Normative references .......................................................................................................................... 15 44 3 Terms and definitions .......................................................................................................................... 17 45 4 Symbols and abbreviated terms .......................................................................................................... 18 46 5 Accessing SMBIOS information .......................................................................................................... 24 47 5.1 General ..................................................................................................................................... 24 48 5.2 Table convention ....................................................................................................................... 24 49 5.2.1 SMBIOS 2.1 (32-bit) Entry Point .................................................................................. 24 50 5.2.2 SMBIOS 3.0 (64-bit) Entry Point .................................................................................. 26 51 6 SMBIOS structures .............................................................................................................................. 27 52 6.1 Structure standards ................................................................................................................... 27 53 6.1.1 Structure evolution and usage guidelines .................................................................... 28 54 6.1.2 Structure header format ............................................................................................... 29 55 6.1.3 Text strings .................................................................................................................. 29 56 6.2 Required structures and data ................................................................................................... 30 57 6.3 SMBIOS fields and CIM MOF properties .................................................................................. 31 58 7 Structure definitions ............................................................................................................................. 32 59 7.1 BIOS Information (Type 0) ........................................................................................................ 32 60 7.1.1 BIOS Characteristics.................................................................................................... 34 61 7.1.2 BIOS Characteristics Extension Bytes......................................................................... 35 62 7.2 System Information (Type 1) .................................................................................................... 36 63 7.2.1 System — UUID ........................................................................................................... 37 64 7.2.2 System — Wake-up Type ............................................................................................ 38 65 7.3 Baseboard (or Module) Information (Type 2) ........................................................................... 38 66 7.3.1 Baseboard — feature flags .......................................................................................... 39 67 7.3.2 Baseboard — Board Type ........................................................................................... 40 68 7.4 System Enclosure or Chassis (Type 3) .................................................................................... 40 69 7.4.1 System Enclosure or Chassis Types ........................................................................... 42 70 7.4.2 System Enclosure or Chassis States........................................................................... 43 71 7.4.3 System Enclosure or Chassis Security Status ............................................................ 44 72 7.4.4 System Enclosure or Chassis — Contained Elements................................................ 44 73 7.5 Processor Information (Type 4) ................................................................................................ 45 74 7.5.1 Processor Information — Processor Type ................................................................... 48 75 7.5.2 Processor Information — Processor Family ................................................................ 49 76 7.5.3 Processor ID field format ............................................................................................. 55 77 7.5.4 Processor Information — Voltage ................................................................................ 56 78 7.5.5 Processor Information — Processor Upgrade ............................................................. 56 79 7.5.6 Processor Information — Core Count.......................................................................... 58 80 7.5.7 Processor Information — Core Enabled ...................................................................... 59 81 7.5.8 Processor Information — Thread Count ...................................................................... 59 82 7.5.9 Processor Characteristics ............................................................................................ 59 83 7.6 Memory Controller Information (Type 5, Obsolete) .................................................................. 60 84 7.6.1 Memory Controller Error Detecting Method ................................................................. 61 85 7.6.2 Memory Controller Error Correcting Capability ............................................................ 62 86 7.6.3 Memory Controller Information — Interleave Support ................................................. 62 Version 3.4.0 Published 3 System Management BIOS (SMBIOS) Reference Specification DSP0134 87 7.6.4 Memory Controller Information — Memory Speeds .................................................... 62 88 7.7 Memory Module Information (Type 6, Obsolete) .....................................................................
Recommended publications
  • UEFI Firmware Fuzzing with Simics Virtual Platform
    UEFI Firmware Fuzzing with Simics Virtual Platform Zhenkun Yang, Yuriy Viktorov, Jin Yang, Jiewen Yao and Vincent Zimmer Intel Corporation fzhenkun.yang, yuriy.viktorov, jin.yang, jiewen.yao, [email protected] Abstract—This paper presents a fuzzing framework for Unified write everything on the platform, while being invisible to OS Extensible Firmware Interface (UEFI) BIOS with the Simics vir- and anti-virus software. tual platform. Firmware has increasingly become an attack target Software community has common practices and great tools as operating systems are getting more and more secure. Due to its special execution environment and the extensive interaction available for quality assurance. For example, debugging and with hardware, UEFI firmware is difficult to test compared to profiling tools are widely used for software development. More user-level applications running on operating systems. Fortunately, advanced techniques such as fuzzing, symbolic execution virtual platforms are widely used to enable early software and and static analysis are becoming popular. However, firmware firmware development by modeling the target hardware platform development and validation community faces numerous chal- in its virtual environment before silicon arrives. Virtual platforms play a critical role in left shifting UEFI firmware validation lenges applying those tools due to the special execution to pre-silicon phase. We integrated the fuzzing capability into environments firmware is running on. The execution regime of Simics virtual platform to allow users to fuzz UEFI firmware boot firmware does not resemble any known operating system code with high-fidelity hardware models provided by Simics. runtime, such as Linux or Windows, thus requiring custom, We demonstrated the ability to automatically detect previously bespoke solutions.
    [Show full text]
  • Allgemeines Abkürzungsverzeichnis
    Allgemeines Abkürzungsverzeichnis L.
    [Show full text]
  • H242-Z10 Edge Server - AMD up 2U 4 Nodes
    H242-Z10 Edge Server - AMD UP 2U 4 Nodes Features • Supports 5G network infrastructure • 2U - 4 nodes rear access server system for Edge Computing • Single AMD EPYC™ 7002 series processor family • 4 x LGA 4094 sockets • 8-Channel RDIMM/LRDIMM DDR4, 32 x DIMMs • 8 x 1Gb/s LAN ports (Intel® I350-AM2) • 4 x 2.5" NVMe hot-swappable SSD bays • 8 x M.2 with PCIe Gen3 x4 interface • 8 x Low profile PCIe x16 expansion slots • 4 x OCP 2.0 Gen3 x16 mezzanine slots • Aspeed® AST2500 remote management controller • 2+0 1200W 80 PLUS Platinum power supply AMD EPYC™ 7002 Series Processor (Rome) The next generation of AMD EPYC has arrived, providing incredible compute, IO and bandwidth capability – designed to meet the huge demand for more compute in big data analytics, HPC and cloud computing. Built on 7nm advanced process technology, allowing for denser compute capabilities with lower power consumption Up to 64 core per CPU, built using Zen 2 high performance cores and AMD’s innovative chiplet architecture Supporting PCIe Gen 4.0 with a bandwidth of up to 64GB/s, twice of PCIe Gen 3.0 Embedded security protection to help defend your CPU, applications, and data Optional CMC / Ring Topology Module GIGABYTE’s H242-Series servers include support for an optional CMC / Ring Topology Module, featuring an Aspeed CMC (Central Management Controller), LAN hub and dual MLAN ports for multi-node management (including iKVM support) by connecting internally to Aspeed BMCs integrated on each node. This results only in one MLAN connection required to perform manage- ment of all four nodes, resulting in less ToR (Top of Rack) cabling and switch connections.
    [Show full text]
  • Dell EMC Poweredge T340 Technical Guide
    Dell EMC PowerEdge T340 Technical Guide Regulatory Model: E60S Regulatory Type: E60S001 Dec. 2020 Rev. A07 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2018 - 2020 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 1 Product Overview Topics: • Introduction • New technologies Introduction The Dell EMC PowerEdge T340 is the reliable, easy to manage, and scalable 1-socket tower server for growing businesses and remote offices/ branch offices. New technologies The PowerEdge T340 equipped with Intel® Xeon® E-2100 and E-2200 product family processors support to help run applications faster and support for full-feature remote management (iDRAC9). The T340 is versatile enough to address many customer segments and workloads. Target workloads include ● Small and medium businesses and organizations: Collaboration/sharing productivity applications, databases, web serving, backup/recovery, and mail and messaging. ● ROBO: Applications and workloads specific to the particular industry, e.g. Retail, Healthcare, Finance, Education, etc. The following table shows the list of new technologies offered by the PowerEdge T340: New Technologies Detailed Descriptions Intel® C246 series chipset Please refer to the chipset section for details. Intel® Xeon® processor E- 2100 and E-2200 Product The Intel® processor that works with Intel® C246 series Family chipset.
    [Show full text]
  • HP Client Management Solutions Overview
    HP Client Management Solutions Overview Introduction ................................................................................................................................... 3 HP Client Management software solutions........................................................................................... 3 HP OpenView PC Configuration Management solution...................................................................... 3 HP OpenView Client Configuration Manager................................................................................... 4 HP Client Foundation Suite and HP Client Premium Suite.................................................................... 4 HP Client Manager .................................................................................................................. 4 Altiris Local Recovery Pro .......................................................................................................... 5 Altiris Connector for HP Systems Insight Manager.......................................................................... 5 Altiris Connector for HP OpenView............................................................................................. 6 Altiris Connector Solution.......................................................................................................... 6 Altiris Migration Suite............................................................................................................... 6 Altiris Client Management Suite Level 1......................................................................................
    [Show full text]
  • Bringing the Openbmc for Platform Manage- Ment System in Telco Cloud
    Rongqiang Zhang Bringing the OpenBMC for Platform Manage- ment System in Telco Cloud Helsinki Metropolia University of Applied Sciences Master of Engineering Information Technology Master’s Thesis 30 Apr 2019 Abstract Rongqiang Zhang Author(s) Bringing the OpenBMC for Platform Man-agement System in Title Telco Cloud Number of Pages 88 pages + 0 appendices Date 30 Apr 2019 Degree Master of Engineering Degree Programme Information Technology Specialisation option Networking and Services Ville Jääskeläinen, Head of Degree Program Instructor(s) Zinaida Grabovskaia, PhL, Senior Lecturer Antti Koivumäki, Senior Lecturer Ari Helminen, Business Manager The current platform management system in Telco cloud infrastructure is based on closed firmware stack. With the upcoming 5G, this closed firmware stack has created several tech- nology and business problems. The major problems are hardware-software vendor lock-in, long lead time for feature development and bug fixing, and security risks. The objective of this study is to evaluate the possibility to bring an Open Source software stack for platform management system and baseboard management controller in Telco cloud. The study was divided into 3 parts. First part is to analyse the current state and project specification. Second part is to introduce and evaluate the OpenBMC, an open source soft- ware stack for the objective of this study. Third part is Proof of Concept to run OpenBMC on Telco. Keywords BMC, 5G, NFV, Redfish, Security Table of Contents Abstract List of Abbreviations 1 Introduction
    [Show full text]
  • 3. System Management Bus
    Input/Output Systems and Peripheral Devices 1 3. SYSTEM MANAGEMENT BUS This laboratory work presents the System Management Bus (SMBus). After an over- view of SMBus, bit and data transfers are described, the bus arbitration procedure is present- ed, the differences between SMBus and the I2C bus are highlighted, and several command protocols are detailed. Next, the Intel SMBus controller is presented, including its registers and commands, as well as its use with I2C devices. The applications aim to detect the devices connected to the computer’s SMBus, read the contents of SPD memories present in the sys- tem, and decode the contents of these memories. 3.1. Overview of SMBus System Management Bus (SMBus) is a simple serial bus with only two signal lines. This bus can be used for communication between various system devices and between these devices and the rest of a system. The operating principles of SMBus are similar to those of the I2C bus. There are, however, several differences between the two buses, differences which will be presented later. SMBus represents a control bus for system management and power management op- erations. A system may use the SMBus to transfer messages to and from various devices in- stead of using individual control lines, which allows to reduce pin count and interconnection wires. A device may use the SMBus to provide manufacturer information, provide the device model number, report different types of errors, accept control parameters, and return the de- vice status. SMBus was initially proposed by Intel as a link between an intelligent battery, a charger for the battery and a microcontroller that communicates with the rest of the system.
    [Show full text]
  • Designing PCI Cards and Drivers for Power Macintosh Computers
    Designing PCI Cards and Drivers for Power Macintosh Computers Revised Edition Revised 3/26/99 Technical Publications © Apple Computer, Inc. 1999 Apple Computer, Inc. Adobe, Acrobat, and PostScript are Even though Apple has reviewed this © 1995, 1996 , 1999 Apple Computer, trademarks of Adobe Systems manual, APPLE MAKES NO Inc. All rights reserved. Incorporated or its subsidiaries and WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH No part of this publication may be may be registered in certain RESPECT TO THIS MANUAL, ITS reproduced, stored in a retrieval jurisdictions. QUALITY, ACCURACY, system, or transmitted, in any form America Online is a service mark of MERCHANTABILITY, OR FITNESS or by any means, mechanical, Quantum Computer Services, Inc. FOR A PARTICULAR PURPOSE. AS A electronic, photocopying, recording, Code Warrior is a trademark of RESULT, THIS MANUAL IS SOLD “AS or otherwise, without prior written Metrowerks. IS,” AND YOU, THE PURCHASER, ARE permission of Apple Computer, Inc., CompuServe is a registered ASSUMING THE ENTIRE RISK AS TO except to make a backup copy of any trademark of CompuServe, Inc. ITS QUALITY AND ACCURACY. documentation provided on Ethernet is a registered trademark of CD-ROM. IN NO EVENT WILL APPLE BE LIABLE Xerox Corporation. The Apple logo is a trademark of FOR DIRECT, INDIRECT, SPECIAL, FrameMaker is a registered Apple Computer, Inc. INCIDENTAL, OR CONSEQUENTIAL trademark of Frame Technology Use of the “keyboard” Apple logo DAMAGES RESULTING FROM ANY Corporation. (Option-Shift-K) for commercial DEFECT OR INACCURACY IN THIS purposes without the prior written Helvetica and Palatino are registered MANUAL, even if advised of the consent of Apple may constitute trademarks of Linotype-Hell AG possibility of such damages.
    [Show full text]
  • Power Macintosh 9500 Series
    K Service Source Power Macintosh 9500 Series Power Macintosh 9500/120, 9500/132, 9500/150, 9500/180MP, and 9500/200 K Service Source Basics Power Macintosh 9500 Series Basics Overview - 1 Overview The Power Macintosh 9500 Series computers are based on the PowerPC 604 microprocessor and support the industry-standard PCI (Peripheral Component Interconnect) bus specification. These computers are the most flexible, expandable, and highest-performance systems from Apple to date. The microprocessor for the Power Macintosh 9500 Series computers is on separate plug-in card, which allows for easy upgrades. The Power Macintosh 9500 family includes five versions: the 9500/120, the 9500/132, the 9500/150, the 9500/180MP (multi-processor), and the 9500/200. Basics Overview - 2 Features of the Power Macintosh 9500 Series include • 120, 132, 150, 180 (multi-processor) or 200 MHz PowerPC 604 microprocessor card with built-in FPU • Six PCI expansion slots • 10 MB per second internal SCSI channel, 5 MB per second external SCSI channel • 512K Level 2 cache • DRAM expansion up to 1536 MB using 168-pin, 70 ns, 64-bit DIMMs • A PCI Apple Accelerated Graphics card included with some configurations (the Power Macintosh 9500 Series does not include on-board video support) • Built-in AAUI and 10BASE-T Ethernet • AppleCD™ 600i 4x or1200i 8x CD-ROM drive • CD-quality stereo sound in/out • Mac™ OS system software 7.5.2, 7.5.3, or 7.5.3 Revision 2 Basics Configurations - 3 Configurations The Power Macintosh 9500/120 comes standard with • 120 MHz PowerPC 604 processor
    [Show full text]
  • Intel/AMD CPU Release Dates, 2018
    Release dates of desktop microprocessors (2018) http://www.cpu-world.com/Releases/Desktop_CPU_releases_(2018).html News • CPUs / Chips • Benchmarks • Information • Forum • Links • About Identification • Pinouts • S-Spec numbers • Glossary Search the site / Ident CPU / Quick CPU looku Release dates of desktop microprocessors (2018) 2017 2019 AMD Intel Desktop CPU releases January 2004 February First Zen-based desktop APUs 2005 14nm, 4 cores, Radeon Vega graphics 2006 2007 Ryzen 3 2200G 2008 3.5GHz / 4MB L3 / 4 cores / Unlocked / Socket AM4 2009 Ryzen 5 2400G 2010 3.6GHz / 4MB L3 / 4 cores / Unlocked / Socket AM4 2011 Other markets: March April 2nd Generation Zen CPUs 8th Generation lineup launch 2018 embedded CPUs 2018 mobile CPUs "Pinnacle Ridge", 12nm, up to 8 cores Coffee Lake-S, 14nm, Up to 6 cores 2018 server CPUs Ryzen 5 2600X Celeron G4900T 3.6GHz / 16MB L3 / 6 cores / Unlocked / Socket AM4 2.9GHz / 2MB L3 / 2 cores / Socket 1151 Ryzen 5 2600 Celeron G4900 3.4GHz / 16MB L3 / 6 cores / Unlocked / Socket AM4 3.1GHz / 2MB L3 / 2 cores / Socket 1151 Ryzen 7 2700X Celeron G4920 3.7GHz / 16MB L3 / 8 cores / Unlocked / Socket AM4 3.2GHz / 2MB L3 / 2 cores / Socket 1151 Ryzen 7 2700 Core i3-8100T 3.2GHz / 16MB L3 / 8 cores / Unlocked / Socket AM4 3.1GHz / 6MB L3 / 4 cores / Socket 1151 Core i3-8300T Ryzen 3 2200GE 3.2GHz / 8MB L3 / 4 cores / Socket 1151 3.2GHz / 4MB L3 / 4 cores / Unlocked / Socket AM4 Core i3-8300 Ryzen 5 2400GE 3.7GHz / 8MB L3 / 4 cores / Socket 1151 3.2GHz / 4MB L3 / 4 cores / Unlocked / Socket AM4 Core i5-8400T 1.7GHz
    [Show full text]
  • Evaluation of AMD EPYC
    Evaluation of AMD EPYC Chris Hollowell <[email protected]> HEPiX Fall 2018, PIC Spain What is EPYC? EPYC is a new line of x86_64 server CPUs from AMD based on their Zen microarchitecture Same microarchitecture used in their Ryzen desktop processors Released June 2017 First new high performance series of server CPUs offered by AMD since 2012 Last were Piledriver-based Opterons Steamroller Opteron products cancelled AMD had focused on low power server CPUs instead x86_64 Jaguar APUs ARM-based Opteron A CPUs Many vendors are now offering EPYC-based servers, including Dell, HP and Supermicro 2 How Does EPYC Differ From Skylake-SP? Intel’s Skylake-SP Xeon x86_64 server CPU line also released in 2017 Both Skylake-SP and EPYC CPU dies manufactured using 14 nm process Skylake-SP introduced AVX512 vector instruction support in Xeon AVX512 not available in EPYC HS06 official GCC compilation options exclude autovectorization Stock SL6/7 GCC doesn’t support AVX512 Support added in GCC 4.9+ Not heavily used (yet) in HEP/NP offline computing Both have models supporting 2666 MHz DDR4 memory Skylake-SP 6 memory channels per processor 3 TB (2-socket system, extended memory models) EPYC 8 memory channels per processor 4 TB (2-socket system) 3 How Does EPYC Differ From Skylake (Cont)? Some Skylake-SP processors include built in Omnipath networking, or FPGA coprocessors Not available in EPYC Both Skylake-SP and EPYC have SMT (HT) support 2 logical cores per physical core (absent in some Xeon Bronze models) Maximum core count (per socket) Skylake-SP – 28 physical / 56 logical (Xeon Platinum 8180M) EPYC – 32 physical / 64 logical (EPYC 7601) Maximum socket count Skylake-SP – 8 (Xeon Platinum) EPYC – 2 Processor Inteconnect Skylake-SP – UltraPath Interconnect (UPI) EYPC – Infinity Fabric (IF) PCIe lanes (2-socket system) Skylake-SP – 96 EPYC – 128 (some used by SoC functionality) Same number available in single socket configuration 4 EPYC: MCM/SoC Design EPYC utilizes an SoC design Many functions normally found in motherboard chipset on the CPU SATA controllers USB controllers etc.
    [Show full text]
  • USB Converter MT606 Series
    USB Converter MT606 Series FEATURES: Use with Keyboard Wedge Scanners Use with Keyboard and Mouse PS/2 and MAC-ADB Port Powered by PC or MAC Connect/Disconnect Without Reboot Plug and Play No Software Needed DESCRIPTION: The MT606 Series USB Converters provide an easy solution for converting existing peripherals, such as keyboards, pointing devices and barcode scanners, to Universal Serial Bus. Models are available to work with both PS/2 and Macintosh devices. As with all USB devices, the converter can be connected and disconnected without re-booting or powering down the computer. Each model has two ports. The MT606-4 has one PS/2 port and one Macintosh ADB (Apple Desktop Bus) port. The MT606-1 has one PS/2 keyboard port and one PS/2 Mouse port. TYPICAL APPLICATIONS: The MT606 converter will enable keyboards, pointing devices (mouse, trackball), and conventional barcode scanners with keyboard wedge interfaces, to be used with computers that feature the newer Universal Serial BUS. At present, newer PCs with the Windows® 98 and Windows 2000 operating systems, feature USB Ports. The Apple iMac, iBook, G3 and G4 use Universal Serial Bus for interfacing to external devices. The Model MT606-1 can accept inputs from a PS/2 Pointing Device and a PS/2 Keyboard or Barcode Scanner. The MT606-4 can accept inputs from a PS/2 keyboard or barcode scanner and any Macintosh ADB device, including Keyboard, Pointing Device or Barcode Scanner. SPECIFICATIONS: Dimensions: 2.2" X 1.5" X 0.85" Operating Voltage: 5VDC derived from USB 56mm X 40mm X 22mm connector.
    [Show full text]