Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L

Total Page:16

File Type:pdf, Size:1020Kb

Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L VOL. 48, 1962 BIOCHEMISTRY: E. L. SAIITH 677 18 Britten, R. J., and R. B. Roberts, Science, 131, 32 (1960). '9 Crestfield, A. M., K. C. Smith, and F. WV. Allen, J. Biol. Chem., 216, 185 (1955). 20 Gamow, G., Nature, 173, 318 (1954). 21 Brenner, S., these PROCEEDINGS, 43, 687 (1957). 22 Nirenberg, M. WV., J. H. Matthaei, and 0. WV. Jones, unpublished data. 23 Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature, 192, 1227 (1961). 24 Levene, P. A., and R. S. Tipson, J. Biol. Ch-nn., 111, 313 (1935). 25 Gierer, A., and K. W. Mundry, Nature, 182, 1437 (1958). 2' Tsugita, A., and H. Fraenkel-Conrat, J. Mllot. Biol., in press. 27 Tsugita, A., and H. Fraenkel-Conrat, personal communication. 28 Wittmann, H. G., Naturwissenschaften, 48, 729 (1961). 29 Freese, E., in Structure and Function of Genetic Elements, Brookhaven Symposia in Biology, no. 12 (1959), p. 63. NUCLEOTIDE BASE CODING AND AM1INO ACID REPLACEMIENTS IN PROTEINS* BY EMIL L. SMITHt LABORATORY FOR STUDY OF HEREDITARY AND METABOLIC DISORDERS AND THE DEPARTMENTS OF BIOLOGICAL CHEMISTRY AND MEDICINE, UNIVERSITY OF UTAH COLLEGE OF MEDICINE Communicated by Severo Ochoa, February 14, 1962 The problem of which bases of messenger or template RNA' specify the coding of amino acids in proteins has been largely elucidated by the use of synthetic polyri- bonucleotides.2-7 For these triplet nucleotide compositions (Table 1), it is of in- terest to examine some of the presently known cases of amino acid substitutions in polypeptides or proteins of known structure. The code appears to be universal, that is, it is the same in all species.6 It is assumed that a mutation involving the substitution of one amino acid for another in a protein of the same species, e.g., human hemoglobin, represents an alteration in the triplet code in which only a single base of the three is replaced without al- teration of the sequence of the other two bases. A change of two or more bases is less likely. Moreover, in those cases for which the code for two amino acids is represented by the same triplet composition of bases, a substitution by an amino acid possessing the same code composition would be unlikely, since this would amount to a double base substitution in order to accomplish the necessary trans- position in sequence. Various considerations suggest that the triplet code is of the nonoverlapping type; this has recently been discussed rather fully by Crick et al.,8 who have also reported evidence that a triplet code is involved. At the time this present evaluation was undertaken, the codes for only 14 amino acids were known.9 It was of interest to determine whether it was possible to pre- dict, on the basis of known amino acid substitutions, the codes for other amino acids. This proved to be valid for certain amino acids where sufficient information was available. This is illustrated below for glutamic acid, aspartic acid, asparagine. and alanine. These data, as well as other, thus serve as a verification of the thesis that simple mutations involving an amino acid substitution involve a change in a single nucleotide base of a triplet without alteration of the sequence in the triplet. 678 BIOCHEMISTRY: E. L. SMITH PROC. N. A. S. TABLE 1 TRIPLET CODE LETTERS FOR AMINO ACIDS* Amino acid Code Amino acid Code Amino acid Code Alanine UCG Glycine UG2 Proline UC2 Arginine UCG Histidine UAC Serine U2C Asparagine UA2 (UAC)t Isoleucine U2A Threonine UAC (UC2) Aspartic acid UAG Leucine U2C (U2A, U2G) Tryptophan UG2 Cysteine U2G Lysine UA2 Tyrosine U2A Glutamic acid UAG Methionine UAG Valine U2G Glutamine UCG Phenylalanine UUU ..... ... * This table has been adapted from Speyer, Lengyel, Basilio, and Ochoa.6 These codes are, in general, similar to the 15 recently reported by Martin, Matthaei, Jones, and Nirenberg.7 The code for glutamine is not directly available. It was deduced from an amino acid replacement in HNO2 mut ant of tobacco mosaic virus.4 t Code letters in parentheses represent additional letters for the amino acid (degenerate code).6 On the basis of this concept, it is useful to examine some homologous proteins of different species in which substitution of amino acids is known; this offers the pos- sibility of determining whether the alteration has involved a change in a single base or whether two or more base substitutions have occurred. Hence, it can be de- duced, in some instances, whether single or multiple steps in mutation have occurred during the evolution of species-specific proteins. Thus, a definition is at hand for direct permissible substitutions (single base change in the triplet) and for changes which would appear to be nonpermissible by a change in a single base. It is also of interest to examine briefly some amino acid substitutions as related to the known codes in terms of possible effects on the functions of proteins. Deduced Codes for Amino Acids.-From known amino acid substitutions, it was possible to deduce certain codes by making use of the code information then avail- able. Code for glutamic acid: In Table 2, there are listed the presently reported amino TABLE 2 SOME AMINO ACID REPLACEMENTS IN HUMAN HEMOGLOBINS Mutant ,_ __Mutant HbA Amino acid Type of Hb HbA Amino acid Type of Hb Glutamic acid Valine S10, 13 Lysine Aspartic acid F18 Glutamic acid Lysine C", E'2 Histidine Tyrosine MBostOn MEmory'5 Glutamic acid Glycine GSan Jose13 Histidine Arginine Zurich'5 Glutamic acid Glutamine GHonolulu14 Glutamic acid Alanine A220 Valine Glutamic acid MMilwaukeel' Serine Threonine A220 Asparagine Lysine Gphiladelphia.6 Threonine Asparagine A220 acid Glycine Aspartic Norfolk17 .... ... acid substitutions in human hemoglobin (Hb). For glutamic acid, it is apparent that this amino acid has been replaced by lysine, valine, glycine, and glutamine. By assuming that only a single base of the triplet can be replaced, the code for glu- tamic acid can be deduced. Since lysine is UA2, the code for glutamic acid must contain at least one A. Since the valine code is U2G, the code for glutamic acid must also contain one U. The code for glycine is UG2; hence, the glutamic acid code must contain, in addition, one G. Therefore, the complete code for glutamic acid is UAG. This is consistent with the code for glutamine, UGC, which can be derived from the code for glutamic acid by a single base change. It is noteworthy that a mutant involving the change glycine to glutamic acid has been found also in the A protein of the tryptophan synthetase of E. coli.21 Code for aspartic acid: Inspection of Table 2 shows that aspartic acid has re- placed lysine (UA2) and glycine (UG2). In order for the code for aspartic acid to VOL. 48, 1962 BIOCHEMISTRY: E. L. SMITH 679 have two bases in common with the codes for glycine and lysine, the code for as- partic acid must be UAG. Codefor asparagine: Asparagine has replaced threonine (UC2) in HbA2, and lysine (UA2) has replaced asparagine in HbGPhiladelphia (Table 2). This suggests that the code for asparagine is UAC. Code for alanine: The only known substitution for alanine in the hemoglobin series is in HbA2 in which it has replaced glutamic acid (UAG) although this may not be a simple mutation. Although such assumptions are somewhat risky, one may consider the known replacements for alanine in the homologous proteins of various species. The data of Pal6us and Tuppy,22 for the cytochromes c of various species, show that glutamine (UCG) and leucine (U2C) replace alanine and, in another position, that serine (U2C), glutamic acid (UAG), -and leucine (U2C) oc- cupy the same position as alanine. Also, in the insulins of various species threonine (UC2) and alanine occur in the same position.23' 24 The codes for almost all of the aforementioned amino acids, viz., threonine, serine, leucine, and glutamine, con- tain U and C. Although some of the transformations for the triplet codes of these amino acids directly to one another and to alanine may involve more than one base change, it appears very likely that at least some of these are permissible changes, that is, that they involve only a single base change. The foregoing information suggests that the code for alanine would have to contain U and C in order to have two bases in common with the code for most of these amino acids. Since the codes for glutamic acid and glutamine both contain G, it is likely that the code for alanine is UCG. This has subsequently been shown to be the code for alanine.6 The Role of Uracil.-The most striking feature of the triplet base compositions for all of the amino acids thus far is that each triplet contains at least one U. Inas- much as the presence of U is the only unique feature of the base composition of RNA, as compared to DNA, an important and specific function for U in template or messenger RNA is implied. On the basis of a triplet code with 4 bases, there are 64 possible combinations. If, however, each code for an amino acid must contain one U, then all of the 27 possible codes lacking one U are excluded. This leaves for the 20 amino acids commonly found in proteins 37 potential triplets. The presently available information on mutants suggests that there are probably preferred positions in the triplet for the unique U although the sequences in the triplet are unknown. It is likely, for example, that there are 16 codes for amino acids in which U occupies the same unknown position of the triplet.
Recommended publications
  • Amino Acid Recognition by Aminoacyl-Trna Synthetases
    www.nature.com/scientificreports OPEN The structural basis of the genetic code: amino acid recognition by aminoacyl‑tRNA synthetases Florian Kaiser1,2,4*, Sarah Krautwurst3,4, Sebastian Salentin1, V. Joachim Haupt1,2, Christoph Leberecht3, Sebastian Bittrich3, Dirk Labudde3 & Michael Schroeder1 Storage and directed transfer of information is the key requirement for the development of life. Yet any information stored on our genes is useless without its correct interpretation. The genetic code defnes the rule set to decode this information. Aminoacyl-tRNA synthetases are at the heart of this process. We extensively characterize how these enzymes distinguish all natural amino acids based on the computational analysis of crystallographic structure data. The results of this meta-analysis show that the correct read-out of genetic information is a delicate interplay between the composition of the binding site, non-covalent interactions, error correction mechanisms, and steric efects. One of the most profound open questions in biology is how the genetic code was established. While proteins are encoded by nucleic acid blueprints, decoding this information in turn requires proteins. Te emergence of this self-referencing system poses a chicken-or-egg dilemma and its origin is still heavily debated 1,2. Aminoacyl-tRNA synthetases (aaRSs) implement the correct assignment of amino acids to their codons and are thus inherently connected to the emergence of genetic coding. Tese enzymes link tRNA molecules with their amino acid cargo and are consequently vital for protein biosynthesis. Beside the correct recognition of tRNA features3, highly specifc non-covalent interactions in the binding sites of aaRSs are required to correctly detect the designated amino acid4–7 and to prevent errors in biosynthesis5,8.
    [Show full text]
  • Asparagine-Proline Sequence Within Membrane-Spanning Segment of SREBP Triggers Intramembrane Cleavage by Site-2 Protease
    Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by Site-2 protease Jin Ye*†, Utpal P. Dave´ *†, Nick V. Grishin‡, Joseph L. Goldstein*§, and Michael S. Brown*§ Departments of *Molecular Genetics and ‡Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046 Contributed by Joseph L. Goldstein, March 16, 2000 The NH2-terminal domains of membrane-bound sterol regulatory nus. It translocates to the nucleus, where it activates more than element-binding proteins (SREBPs) are released into the cytosol by 20 genes encoding enzymes of cholesterol and fatty acid synthesis regulated intramembrane proteolysis, after which they enter the as well as the low density lipoprotein receptor (6, 7). When nucleus to activate genes encoding lipid biosynthetic enzymes. sterols build up in cells, the SREBP͞SCAP complex fails to exit Intramembrane proteolysis is catalyzed by Site-2 protease (S2P), a the ER, and it never reaches S1P (8, 9). As a result, the hydrophobic zinc metalloprotease that cleaves SREBPs at a mem- NH2-terminal domains of the SREBPs are no longer released brane-embedded leucine-cysteine bond. In the current study, we into the nucleus, and transcription of the target genes declines. use domain-swapping methods to localize the residues within This mechanism allows cholesterol to inhibit its own synthesis the SREBP-2 membrane-spanning segment that are required for and uptake, thereby preventing cholesterol overaccumulation in cleavage by S2P. The studies reveal a requirement for an asparag- cells. ine-proline sequence in the middle third of the transmembrane The human gene encoding S2P was cloned by complementa- segment.
    [Show full text]
  • A Review of Dietary (Phyto)Nutrients for Glutathione Support
    nutrients Review A Review of Dietary (Phyto)Nutrients for Glutathione Support Deanna M. Minich 1,* and Benjamin I. Brown 2 1 Human Nutrition and Functional Medicine Graduate Program, University of Western States, 2900 NE 132nd Ave, Portland, OR 97230, USA 2 BCNH College of Nutrition and Health, 116–118 Finchley Road, London NW3 5HT, UK * Correspondence: [email protected] Received: 8 July 2019; Accepted: 23 August 2019; Published: 3 September 2019 Abstract: Glutathione is a tripeptide that plays a pivotal role in critical physiological processes resulting in effects relevant to diverse disease pathophysiology such as maintenance of redox balance, reduction of oxidative stress, enhancement of metabolic detoxification, and regulation of immune system function. The diverse roles of glutathione in physiology are relevant to a considerable body of evidence suggesting that glutathione status may be an important biomarker and treatment target in various chronic, age-related diseases. Yet, proper personalized balance in the individual is key as well as a better understanding of antioxidants and redox balance. Optimizing glutathione levels has been proposed as a strategy for health promotion and disease prevention, although clear, causal relationships between glutathione status and disease risk or treatment remain to be clarified. Nonetheless, human clinical research suggests that nutritional interventions, including amino acids, vitamins, minerals, phytochemicals, and foods can have important effects on circulating glutathione which may translate to clinical benefit. Importantly, genetic variation is a modifier of glutathione status and influences response to nutritional factors that impact glutathione levels. This narrative review explores clinical evidence for nutritional strategies that could be used to improve glutathione status.
    [Show full text]
  • L -Glutamic Acid (G1251)
    L-Glutamic acid Product Number G 1251 Store at Room Temperature Product Description Precautions and Disclaimer Molecular Formula: C5H9NO4 For Laboratory Use Only. Not for drug, household or Molecular Weight: 147.1 other uses. CAS Number: 56-86-0 pI: 3.081 Preparation Instructions 1 pKa: 2.10 (α-COOH), 9.47 (α-NH2), 4.07 (ϕ-COOH) This product is soluble in 1 M HCl (100 mg/ml), with 2 Specific Rotation: D +31.4 ° (6 N HCl, 22.4 °C) heat as needed, yielding a clear, colorless solution. Synonyms: (S)-2-aminoglutaric acid, (S)-2- The solubility in water at 25 °C has been reported to aminopentanedioic acid, 1-aminopropane-1,3- be 8.6 mg/ml.2 dicarboxylic acid, Glu2 Storage/Stability L-Glutamic acid is one of the two amino acids that Aqueous glutamic acid solutions will form contains a carboxylic acid group in its side chains. pyrrolidonecarboxylic acid slowly at room temperature Glutamic acid is commonly referred to as "glutamate", and more rapidly at 100 °C.9 because its carboxylic acid side chain will be deprotonated and thus negatively charged in its References anionic form at physiological pH. In amino acid 1. Molecular Biology LabFax, Brown, T. A., ed., BIOS metabolism, glutamate is formed from the transfer of Scientific Publishers Ltd. (Oxford, UK: 1991), p. amino groups from amino acids to α-ketoglutarate. It 29. thus acts as an intermediary between ammonia and 2. The Merck Index, 12th ed., Entry# 4477. the amino acids in vivo. Glutamate is converted to 3. Biochemistry, 3rd ed., Stryer, L., W.
    [Show full text]
  • COVID-19: the Disease, the Immunological Challenges, the Treatment with Pharmaceuticals and Low-Dose Ionizing Radiation
    cells Review COVID-19: The Disease, the Immunological Challenges, the Treatment with Pharmaceuticals and Low-Dose Ionizing Radiation Jihang Yu 1 , Edouard I. Azzam 1, Ashok B. Jadhav 1 and Yi Wang 1,2,* 1 Radiobiology and Health, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada; [email protected] (J.Y.); [email protected] (E.I.A.); [email protected] (A.B.J.) 2 Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada * Correspondence: [email protected]; Tel.: +1-613-584-3311 (ext. 42653) Abstract: The year 2020 will be carved in the history books—with the proliferation of COVID-19 over the globe and with frontline health workers and basic scientists worldwide diligently fighting to alleviate life-threatening symptoms and curb the spread of the disease. Behind the shocking prevalence of death are countless families who lost loved ones. To these families and to humanity as a whole, the tallies are not irrelevant digits, but a motivation to develop effective strategies to save lives. However, at the onset of the pandemic, not many therapeutic choices were available besides supportive oxygen, anti-inflammatory dexamethasone, and antiviral remdesivir. Low-dose radiation (LDR), at a much lower dosage than applied in cancer treatment, re-emerged after a Citation: Yu, J.; Azzam, E.I.; Jadhav, 75-year silence in its use in unresolved pneumonia, as a scientific interest with surprising effects in A.B.; Wang, Y. COVID-19: The soothing the cytokine storm and other symptoms in severe COVID-19 patients.
    [Show full text]
  • Solutions to 7.012 Problem Set 1
    MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 1 Question 1 Bob, a student taking 7.012, looks at a long-standing puddle outside his dorm window. Curious as to what was growing in the cloudy water, he takes a sample to his TA, Brad Student. He wanted to know whether the organisms in the sample were prokaryotic or eukaryotic. a) Give an example of a prokaryotic and a eukaryotic organism. Prokaryotic: Eukaryotic: All bacteria Yeast, fungi, any animial or plant b) Using a light microscope, how could he tell the difference between a prokaryotic organism and a eukaryotic one? The resolution of the light microscope would allow you to see if the cell had a true nucleus or organelles. A cell with a true nucleus and organelles would be eukaryotic. You could also determine size, but that may not be sufficient to establish whether a cell is prokaryotic or eukaryotic. c) What additional differences exist between prokaryotic and eukaryotic organisms? Any answer from above also fine here. In addition, prokaryotic and eukaryotic organisms differ at the DNA level. Eukaryotes have more complex genomes than prokaryotes do. Question 2 A new startup company hires you to help with their product development. Your task is to find a protein that interacts with a polysaccharide. a) You find a large protein that has a single binding site for the polysaccharide cellulose. Which amino acids might you expect to find in the binding pocket of the protein? What is the strongest type of interaction possible between these amino acids and the cellulose? Cellulose is a polymer of glucose and as such has many free hydroxyl groups.
    [Show full text]
  • Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L
    VOL. 48, 1962 BIOCHEMISTRY: E. L. SAIITH 677 18 Britten, R. J., and R. B. Roberts, Science, 131, 32 (1960). '9 Crestfield, A. M., K. C. Smith, and F. WV. Allen, J. Biol. Chem., 216, 185 (1955). 20 Gamow, G., Nature, 173, 318 (1954). 21 Brenner, S., these PROCEEDINGS, 43, 687 (1957). 22 Nirenberg, M. WV., J. H. Matthaei, and 0. WV. Jones, unpublished data. 23 Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature, 192, 1227 (1961). 24 Levene, P. A., and R. S. Tipson, J. Biol. Ch-nn., 111, 313 (1935). 25 Gierer, A., and K. W. Mundry, Nature, 182, 1437 (1958). 2' Tsugita, A., and H. Fraenkel-Conrat, J. Mllot. Biol., in press. 27 Tsugita, A., and H. Fraenkel-Conrat, personal communication. 28 Wittmann, H. G., Naturwissenschaften, 48, 729 (1961). 29 Freese, E., in Structure and Function of Genetic Elements, Brookhaven Symposia in Biology, no. 12 (1959), p. 63. NUCLEOTIDE BASE CODING AND AM1INO ACID REPLACEMIENTS IN PROTEINS* BY EMIL L. SMITHt LABORATORY FOR STUDY OF HEREDITARY AND METABOLIC DISORDERS AND THE DEPARTMENTS OF BIOLOGICAL CHEMISTRY AND MEDICINE, UNIVERSITY OF UTAH COLLEGE OF MEDICINE Communicated by Severo Ochoa, February 14, 1962 The problem of which bases of messenger or template RNA' specify the coding of amino acids in proteins has been largely elucidated by the use of synthetic polyri- bonucleotides.2-7 For these triplet nucleotide compositions (Table 1), it is of in- terest to examine some of the presently known cases of amino acid substitutions in polypeptides or proteins of known structure.
    [Show full text]
  • Ibotenic Acid
    Ibotenic acid Catalog Number I2765 Storage at Room Temperature Product Description Preparation Instructions Molecular Formula: C5H6N2O4 This product is soluble in water (1 mg/ml) with Molecular Weight: 158.1 < 5 min. sonication, yielding a clear, colorless CAS Number: 2552-55-8 solution. Melting point: 151-152 °C1 Synonyms: α-amino-3-hydroxy-5-isoxazoleacetic Storage/Stability acid1 Store the product desiccated at –20 C and it remains active for at least 3 years. This product is the principal toxin found in many mushroom varieties. Cells metabolize this product to References another active derivative, muscimol. Both of these 1. The Merck Index, 11th ed., Entry# 4808. toxins act as excitatory amino acids by mimicking the 2. Collingridge, et al., Excitatory amino acid receptors natural transmitters, glutamic acid and aspartic acid, on in the vertebrate central nervous system. neurons in the central nervous system.2,3 These toxins Pharmacological Review, 40(2), 143 (1989). may also cause selective death of neurons sensitive to these excitatory amino acids.4,5 This product is a potent 3. Johnston, G. A., et al., Spinal interneuron excitation glutamate agonist, which has been used to potentiate by conformationally restricted analogues of L- anesthesia and to inhibit tremor and emesis. glutamic acid. Nature, 248(5451), 804-805 (1974). 4. Gallagher, M., et al., The amygdala central nucleus This product has also been used to suppress enzymatic and appetitive Pavlovian conditioning: lesions activities. When injected into rat brain, it was shown to impair one class of conditioned behavior. J. suppress choline acetyltransferase activity.6 Seven days after injection, enzyme levels had decreased 60%; Neurosci., 10(6), 1906-1911 (1990) after 3 months activity had returned to normal.
    [Show full text]
  • And L- Glutamic Acid (030802, 374350) Technical Document
    Gamma aminobutyric acid (GABA) and L- Glutamic Acid (030802, 374350) Technical Document Reason for Issuance: New Active Ingredient Date Issued: August 1998 EPA Publication Number: EPA 730-F-98-019 1. Description of the Chemical o Generic Name(s)of the Active Ingredient(s): Gamma aminobutyric Acid and L- Glutamic Acid o OPP Chemical Codes: 030802 and 374350 o Year of Initial Registration: 1998 o Pesticide Type: Biochemical plant growth regulator o U.S. and Foreign Producers: Auxein Corporation 2. Use Sites, Application Timing & Target Pests Application of AuxiGro WP, the end-use product containing GABA and L-Glutamic Acid, enhances plant growth. AuxiGro WP may be used on beans, cole crops, green peppers, lettuce, peanuts, potatoes, spinach, tomatoes, lawn and turfgrasses, and ornamentals. Methods of application include both foliar and drench treatments. 3. Science Findings A. Toxicololgy Mammalian toxicology data requirements have been submitted and adequately satisfy requirements to support the unconditional registration of AuxiGro WP. The data which were submitted for this product indicated: an acute oral study (Tox Category IV), an acute dermal study (Tox Category IV), an acute inhalation study (Tox Category IV), a primary dermal irritation study (Tox Category IV), a primary eye irritation study (Tox Category III), and a dermal sensitization study (non- sensitizer). Data waivers accepted include mutagenicity, immunotoxicity, and genotoxicity. B. Human Health Effects a. Acute and Chronic Dietary Risks for Sensitive Subpopulations, Particularly Infants and Children The two active ingredients of AuxiGro, L-Glutamic acid and gamma aminobutyric acid (GABA) are amino acids naturally present in plants and animals. Both compounds serve as brain neurotransmitters.
    [Show full text]
  • Occurrence of Agmatine Pathway for Putrescine Synthesis in Selenomonas Ruminatium
    Biosci. Biotechnol. Biochem., 72 (2), 445–455, 2008 Occurrence of Agmatine Pathway for Putrescine Synthesis in Selenomonas ruminatium Shaofu LIAO,1;* Phuntip POONPAIROJ,1;** Kyong-Cheol KO,1;*** Yumiko TAKATUSKA,1;**** y Yoshihiro YAMAGUCHI,1;***** Naoki ABE,1 Jun KANEKO,1 and Yoshiyuki KAMIO2; 1Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiyamachi, Aobaku, Sendai 981-8555, Japan 2Department of Human Health and Nutrition, Graduate School of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori 981-1295, Japan Received August 28, 2007; Accepted November 16, 2007; Online Publication, February 7, 2008 [doi:10.1271/bbb.70550] Selenomonas ruminantium synthesizes cadaverine and Polyamines such as putrescine, cadaverine, and putrescine from L-lysine and L-ornithine as the essential spermidine are essential constituents of peptidoglycan constituents of its peptidoglycan by a constitutive lysine/ and they play a significant role in the maintenance of the ornithine decarboxylase (LDC/ODC). S. ruminantium integrity of the cell envelope in Selenomonas ruminan- grew normally in the presence of the specific inhibitor tium, Veillonella parvulla, V. alcalescens, and Anaero- for LDC/ODC, DL- -difluoromethylornithine, when vibrio lipolytica.1–3) When S. ruminantium and two arginine was supplied in the medium. In this study, species of Veillonella are grown in a medium supple- we discovered the presence of arginine decarboxylase mented with putrescine or cadaverine, putrescine and (ADC), the key enzyme in agmatine pathway for cadaverine respectively link covalently to the -carbox- putrescine synthesis, in S. ruminantium. We purified yl group of the D-glutamic acid residue of the peptido- and characterized ADC and cloned its gene (adc) from glycan, which is catalyzed by diamine:lipid intermediate S.
    [Show full text]
  • Amino Acid Degradation
    BI/CH 422/622 OUTLINE: OUTLINE: Protein Degradation (Catabolism) Digestion Amino-Acid Degradation Inside of cells Protein turnover Dealing with the carbon Ubiquitin Fates of the 29 Activation-E1 Seven Families Conjugation-E2 nitrogen atoms in 20 1. ADENQ Ligation-E3 AA: Proteosome 2. RPH 9 ammonia oxidase Amino-Acid Degradation 18 transamination Ammonia 2 urea one-carbon metabolism free transamination-mechanism to know THF Urea Cycle – dealing with the nitrogen SAM 5 Steps Carbamoyl-phosphate synthetase 3. GSC Ornithine transcarbamylase PLP uses Arginino-succinate synthetase Arginino-succinase 4. MT – one carbon metabolism Arginase 5. FY – oxidase vs oxygenase Energetics Urea Bi-cycle 6. KW – Urea Cycle – dealing with the nitrogen 7. BCAA – VIL Feeding the Urea Cycle Glucose-Alanine Cycle Convergence with Fatty acid-odd chain Free Ammonia Overview Glutamine Glutamate dehydrogenase Overall energetics Amino Acid A. Concepts 1. ConvergentDegradation 2. ketogenic/glucogenic 3. Reactions seen before The SEVEN (7) Families B. Transaminase (A,D,E) / Deaminase (Q,N) Family C. Related to biosynthesis (R,P,H; C,G,S; M,T) 1.Glu Family a. Introduce oxidases/oxygenases b. Introduce one-carbon metabolism (1C) 2.Pyruvate Family a. PLP reactions 3. a-Ketobutyric Family (M,T) a. 1-C metabolism D. Dedicated 1. Aromatic Family (F,Y) a. oxidases/oxygenases 2. a-Ketoadipic Family (K,W) 3. Branched-chain Family (V,I,L) E. Convergence with Fatty Acids: propionyl-CoA 29 N 1 Amino Acid Degradation • Intermediates of the central metabolic pathway • Some amino acids result in more than one intermediate. • Ketogenic amino acids can be converted to ketone bodies.
    [Show full text]
  • Where Metal Ions Bind in Proteins (Metafloprotein/Protein Structure/Hydrophobicity Contrast Function) MASON M
    Proc. Nadl. Acad. Sci. USA Vol. 87, pp. 5648-5652, August 1990 Biophysics Where metal ions bind in proteins (metafloprotein/protein structure/hydrophobicity contrast function) MASON M. YAMASHITA*t, LAURA WESSON*, GEORGE EISENMANt, AND DAVID EISENBERG*§ *Molecular Biology Institute and Department of Chemistry and Biochemistry, and *Department of Physiology, University of California, Los Angeles, CA 90024 Contributed by David Eisenberg, May 14, 1990 ABSTRACT The environments of metal ions (Li', Na', K+, Ag+, Cs+, Mg2+, Ca2+, Mn2+9 Cu2+, Zn2+) in proteins and other metal-host molecules have been examined. Regard- .. 0.00- ______ less ofthe metal and its precise pattern ofligation to the protein, there is a common qualitative feature to the bind site: the metal is ligated by a shell of hydrophilic atomic groups (con- E -0.01 Zn2+ taining oxygen, nitrogen, or sulfur atoms) and this hydrophilic shell is embedded within a larger shell of hydrophobic atomic - -0.02 groups (containing carbon atoms). That is, metals bind at centers of high hydrophobicity contrast. This qualitative ob- servation can be described analytically by the hydrophobicity 0 2 4 6 8 10 contrast function, C, evaluated from the structure. This func- tion is large and positive for a sphere of hydrophilic atomic 0.01 groups (characterized by atomic salvation parameters, Aar, having values < 0) at the center of a larger sphere of hydro- phobic atomic groups (characterized by Aor > 0). In the 23 0.00. metal-binding molecules we have examined, the maximum values of the contrast function lie near to observed metal binding sites. This suggests that the hydrophobicity contrast function may be useful for locating, characterizing, and de- - -0.01 signing metal binding sites in proteins.
    [Show full text]