Effect of Proline and Glutamine on the Functional Properties of Wheat Dough in Winter Wheat Varieties BRENDA C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Dietary L-Glutamine Or L-Glutamine Plus L-Glutamic Acid
Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola Effects of Dietary L-Glutamine or L-Glutamine Plus ISSN 1516-635X Oct - Dec 2015 / Special Issue L-Glutamic Acid Supplementation Programs on the Nutrition - Poultry feeding additives / 093-098 Performance and Breast Meat Yield Uniformity of http://dx.doi.org/10.1590/1516-635xSpecialIssue 42-d-Old Broilers Nutrition-PoultryFeedingAdditives093-098 Author(s) ABSTRACT Ribeiro Jr VIII This study aimed at evaluating four dietary L-Glutamine (L-Gln) Albino LFTI or L-Gln plus L-Glutamate (L-Glu) supplementation programs on the Rostagno HSI Hannas MII performance, breast yield, and uniformity of broilers. A total of 2,112 Ribeiro CLNIII one-d-old male Cobb 500® broilers were distributed according to a Vieira RAIII randomized block design in a 2 × 4 factorial arrangement (L-Gln or L-Gln Araújo WAG deIV Pessoa GBSII plus L-Glu × 4 supplementation programs), totaling eight treatments Messias RKGIII with 12 replicates of 22 broilers each. The supplementation programs Silva DL daIII consisted of the dietary inclusion or not of 0.4% of L-Gln or L-Gln plus L-Glu for four different periods: 0 days (negative control), 9d, 21d, and 42d. Feed intake (FI, g), body weight gain (BWG, g), feed conversion I Federal University of Viçosa, Department ratio (FCR, kg/kg), coefficient of variation of body weight (CV, %), body of Animal Science, Av PH Rolfs S/N, Viçosa 36570-000, MG, Brazil weight uniformity (UNIF, %), breast weight (BW, g), breast yield (BY, II Ajinomoto do Brasil Ind. e Com. de %), coefficient of variation of breast weight (CVB), breast uniformity Alimentos Ltda. -
Al Exposure Increases Proline Levels by Different Pathways in An
www.nature.com/scientificreports OPEN Al exposure increases proline levels by diferent pathways in an Al‑sensitive and an Al‑tolerant rye genotype Alexandra de Sousa1,2, Hamada AbdElgawad2,4, Fernanda Fidalgo1, Jorge Teixeira1, Manuela Matos3, Badreldin A. Hamed4, Samy Selim5, Wael N. Hozzein6, Gerrit T. S. Beemster2 & Han Asard2* Aluminium (Al) toxicity limits crop productivity, particularly at low soil pH. Proline (Pro) plays a role in protecting plants against various abiotic stresses. Using the relatively Al‑tolerant cereal rye (Secale cereale L.), we evaluated Pro metabolism in roots and shoots of two genotypes difering in Al tolerance, var. RioDeva (sensitive) and var. Beira (tolerant). Most enzyme activities and metabolites of Pro biosynthesis were analysed. Al induced increases in Pro levels in each genotype, but the mechanisms were diferent and were also diferent between roots and shoots. The Al‑tolerant genotype accumulated highest Pro levels and this stronger increase was ascribed to simultaneous activation of the ornithine (Orn)‑biosynthetic pathway and decrease in Pro oxidation. The Orn pathway was particularly enhanced in roots. Nitrate reductase (NR) activity, N levels, and N/C ratios demonstrate that N‑metabolism is less inhibited in the Al‑tolerant line. The correlation between Pro changes and diferences in Al‑sensitivity between these two genotypes, supports a role for Pro in Al tolerance. Our results suggest that diferential responses in Pro biosynthesis may be linked to N‑availability. Understanding the role of Pro in diferences between genotypes in stress responses, could be valuable in plant selection and breeding for Al resistance. Proline (Pro) is involved in a wide range of plant physiological and developmental processes1. -
Amino Acids, Glutamine, and Protein Metabolism in Very Low Birth Weight Infants
0031-3998/05/5806-1259 PEDIATRIC RESEARCH Vol. 58, No. 6, 2005 Copyright © 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A. Amino Acids, Glutamine, and Protein Metabolism in Very Low Birth Weight Infants PRABHU S. PARIMI, MARK M. KADROFSKE, LOURDES L. GRUCA, RICHARD W. HANSON, AND SATISH C. KALHAN Department of Pediatrics, Schwartz Center for Metabolism and Nutrition, Case Western Reserve University School of Medicine, MetroHealth Medical Center, Cleveland, Ohio, 44109 ABSTRACT Glutamine has been proposed to be conditionally essential for 5 h (AA1.5) resulted in decrease in rate of appearance (Ra) of premature infants, and the currently used parenteral nutrient phenylalanine and urea, but had no effect on glutamine Ra. mixtures do not contain glutamine. De novo glutamine synthesis Infusion of amino acids at 3.0 g/kg/d for 20 h resulted in increase (DGln) is linked to inflow of carbon into and out of the tricar- in DGln, leucine transamination, and urea synthesis, but had no boxylic acid (TCA) cycle. We hypothesized that a higher supply effect on Ra phenylalanine (AA-Ext). These data show an acute of parenteral amino acids by increasing the influx of amino acid increase in parenteral amino acid–suppressed proteolysis, how- carbon into the TCA cycle will enhance the rate of DGln. Very ever, such an effect was not seen when amino acids were infused low birth weight infants were randomized to receive parenteral for 20 h and resulted in an increase in glutamine synthesis. amino acids either 1.5 g/kg/d for 20 h followed by 3.0 g/kg/d for (Pediatr Res 58: 1259–1264, 2005) 5 h (AA1.5) or 3.0 g/kg/d for 20 h followed by 1.5 g/kg/d for 5 h (AA3.0). -
A Review of Dietary (Phyto)Nutrients for Glutathione Support
nutrients Review A Review of Dietary (Phyto)Nutrients for Glutathione Support Deanna M. Minich 1,* and Benjamin I. Brown 2 1 Human Nutrition and Functional Medicine Graduate Program, University of Western States, 2900 NE 132nd Ave, Portland, OR 97230, USA 2 BCNH College of Nutrition and Health, 116–118 Finchley Road, London NW3 5HT, UK * Correspondence: [email protected] Received: 8 July 2019; Accepted: 23 August 2019; Published: 3 September 2019 Abstract: Glutathione is a tripeptide that plays a pivotal role in critical physiological processes resulting in effects relevant to diverse disease pathophysiology such as maintenance of redox balance, reduction of oxidative stress, enhancement of metabolic detoxification, and regulation of immune system function. The diverse roles of glutathione in physiology are relevant to a considerable body of evidence suggesting that glutathione status may be an important biomarker and treatment target in various chronic, age-related diseases. Yet, proper personalized balance in the individual is key as well as a better understanding of antioxidants and redox balance. Optimizing glutathione levels has been proposed as a strategy for health promotion and disease prevention, although clear, causal relationships between glutathione status and disease risk or treatment remain to be clarified. Nonetheless, human clinical research suggests that nutritional interventions, including amino acids, vitamins, minerals, phytochemicals, and foods can have important effects on circulating glutathione which may translate to clinical benefit. Importantly, genetic variation is a modifier of glutathione status and influences response to nutritional factors that impact glutathione levels. This narrative review explores clinical evidence for nutritional strategies that could be used to improve glutathione status. -
Low Proline Diet in Type I Hyperprolinaemia
Arch Dis Child: first published as 10.1136/adc.46.245.72 on 1 February 1971. Downloaded from Archives of Disease in Childhood, 1971, 46, 72. Low Proline Diet in Type I Hyperprolinaemia J. T. HARRIES, A. T. PIESOWICZ,* J. W. T. SEAKINS, D. E. M. FRANCIS, and 0. H. WOLFF From The Hospital for Sick Children, and the Institute of Child Health, University of London Harries, J. T., Piesowicz, A. T., Seakins, J. W. T., Francis, D. E. M., and Wolff, 0. H. (1971). Archives of Disease in Childhood, 46, 72. Low proline diet in type I hyperprolinaemia. A diagnosis of Type I hyperprolinaemia was made in a 7-month-old infant who presented with hypocalcaemic convulsions and malabsorp- tion. The plasma levels of proline were grossly raised and the urinary excretion of proline, hydroxyproline, and glycine was increased; neurological development was delayed and there were associated abnormalities of the electroencephalogram, renal tract, and bones. Restriction of dietary proline at the age of 9 months resulted in a prompt fall of plasma levels of proline to normal, and a low proline diet was continued until the age of 27 months when persistence of the biochemical defect was shown. During the period of dietary treatment, growth was satisfactory, mental development improved, and the electroencephalogram, and the renal, skeletal, and intestinal abnormalities disappeared. Proline should be regarded as a 'semi-essential' amino acid in the growing infant. Hyperprolinaemia, appearing in several members balance can be maintained on a proline-free diet copyright. of a family was first described by Scriver, Schafer, (Rose et al., 1955), and therefore the amino acid is and Efron in 1961. -
L -Glutamic Acid (G1251)
L-Glutamic acid Product Number G 1251 Store at Room Temperature Product Description Precautions and Disclaimer Molecular Formula: C5H9NO4 For Laboratory Use Only. Not for drug, household or Molecular Weight: 147.1 other uses. CAS Number: 56-86-0 pI: 3.081 Preparation Instructions 1 pKa: 2.10 (α-COOH), 9.47 (α-NH2), 4.07 (ϕ-COOH) This product is soluble in 1 M HCl (100 mg/ml), with 2 Specific Rotation: D +31.4 ° (6 N HCl, 22.4 °C) heat as needed, yielding a clear, colorless solution. Synonyms: (S)-2-aminoglutaric acid, (S)-2- The solubility in water at 25 °C has been reported to aminopentanedioic acid, 1-aminopropane-1,3- be 8.6 mg/ml.2 dicarboxylic acid, Glu2 Storage/Stability L-Glutamic acid is one of the two amino acids that Aqueous glutamic acid solutions will form contains a carboxylic acid group in its side chains. pyrrolidonecarboxylic acid slowly at room temperature Glutamic acid is commonly referred to as "glutamate", and more rapidly at 100 °C.9 because its carboxylic acid side chain will be deprotonated and thus negatively charged in its References anionic form at physiological pH. In amino acid 1. Molecular Biology LabFax, Brown, T. A., ed., BIOS metabolism, glutamate is formed from the transfer of Scientific Publishers Ltd. (Oxford, UK: 1991), p. amino groups from amino acids to α-ketoglutarate. It 29. thus acts as an intermediary between ammonia and 2. The Merck Index, 12th ed., Entry# 4477. the amino acids in vivo. Glutamate is converted to 3. Biochemistry, 3rd ed., Stryer, L., W. -
Amino Acids Amino Acids
Amino Acids Amino Acids What Are Amino Acids? Essential Amino Acids Non Essential Amino Acids Amino acids are the building blocks of proteins; proteins are made of amino acids. Isoleucine Arginine (conditional) When you ingest a protein your body breaks it down into the individual aminos, Leucine Glutamine (conditional) reorders them, re-folds them, and turns them into whatever is needed by the body at Lysine Tyrosine (conditional) that time. From only 20 amino acids, the body is able to make thousands of unique proteins with different functions. Methionine Cysteine (conditional) Phenylalanine Glycine (conditional) Threonine Proline (conditional) Did You Know? Tryptophan Serine (conditional) Valine Ornithine (conditional) There are 20 different types of amino acids that can be combined to make a protein. Each protein consists of 50 to 2,000 amino acids that are connected together in a specific Histidine* Alanine sequence. The sequence of the amino acids determines each protein’s unique structure Asparagine and its specific function in the body. Asparate Popular Amino Acid Supplements How Do They Benefit Our Health? Acetyl L- Carnitine: As part of its role in supporting L-Lysine: L-Lysine, an essential amino acid, is mental function, Acetyl L-Carnitine may help needed to support proper growth and bone Proteins (amino acids) are needed by your body to maintain muscles, bones, blood, as support memory, attention span and mental development. It can also support immune function. well as create enzymes, neurotransmitters and antibodies, as well as transport and performance. store molecules. N-Acetyl Cysteine: N-Acetyl Cysteine (NAC) is a L-Arginine: L-Arginine is a nonessential amino acid form of the amino acid cysteine. -
Solutions to 7.012 Problem Set 1
MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 1 Question 1 Bob, a student taking 7.012, looks at a long-standing puddle outside his dorm window. Curious as to what was growing in the cloudy water, he takes a sample to his TA, Brad Student. He wanted to know whether the organisms in the sample were prokaryotic or eukaryotic. a) Give an example of a prokaryotic and a eukaryotic organism. Prokaryotic: Eukaryotic: All bacteria Yeast, fungi, any animial or plant b) Using a light microscope, how could he tell the difference between a prokaryotic organism and a eukaryotic one? The resolution of the light microscope would allow you to see if the cell had a true nucleus or organelles. A cell with a true nucleus and organelles would be eukaryotic. You could also determine size, but that may not be sufficient to establish whether a cell is prokaryotic or eukaryotic. c) What additional differences exist between prokaryotic and eukaryotic organisms? Any answer from above also fine here. In addition, prokaryotic and eukaryotic organisms differ at the DNA level. Eukaryotes have more complex genomes than prokaryotes do. Question 2 A new startup company hires you to help with their product development. Your task is to find a protein that interacts with a polysaccharide. a) You find a large protein that has a single binding site for the polysaccharide cellulose. Which amino acids might you expect to find in the binding pocket of the protein? What is the strongest type of interaction possible between these amino acids and the cellulose? Cellulose is a polymer of glucose and as such has many free hydroxyl groups. -
Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: a Bioorganic Approach to Catalytic Asymmetric Carbon-Carbon Bond-Forming Reactions
5260 J. Am. Chem. Soc. 2001, 123, 5260-5267 Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon-Carbon Bond-Forming Reactions Kandasamy Sakthivel, Wolfgang Notz, Tommy Bui, and Carlos F. Barbas III* Contribution from The Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 ReceiVed January 3, 2001 Abstract: Direct asymmetric catalytic aldol reactions have been successfully performed using aldehydes and unmodified ketones together with commercially available chiral cyclic secondary amines as catalysts. Structure- based catalyst screening identified L-proline and 5,5-dimethyl thiazolidinium-4-carboxylate (DMTC) as the most powerful amino acid catalysts for the reaction of both acyclic and cyclic ketones as aldol donors with aromatic and aliphatic aldehydes to afford the corresponding aldol products with high regio-, diastereo-, and enantioselectivities. Reactions employing hydroxyacetone as an aldol donor provide anti-1,2-diols as the major product with ee values up to >99%. The reactions are assumed to proceed via a metal-free Zimmerman- Traxler-type transition state and involve an enamine intermediate. The observed stereochemistry of the products is in accordance with the proposed transition state. Further supporting evidence is provided by the lack of nonlinear effects. The reactions tolerate a small amount of water (<4 vol %), do not require inert reaction conditions and preformed enolate equivalents, and can be conveniently performed at room temperature in various solvents. In addition, reaction conditions that facilitate catalyst recovery as well as immobilization are described. Finally, mechanistically related addition reactions such as ketone additions to imines (Mannich- type reactions) and to nitro-olefins and R,â-unsaturated diesters (Michael-type reactions) have also been developed. -
Proline Oxidase Controls Proline, Glutamate, and Glutamine Cellular Concentrations in a U87 Glioblastoma Cell Line
RESEARCH ARTICLE Proline oxidase controls proline, glutamate, and glutamine cellular concentrations in a U87 glioblastoma cell line Pamela Cappelletti1,2*, Elena Tallarita1, Valentina Rabattoni1, Paola Campomenosi1,2, Silvia Sacchi1,2, Loredano Pollegioni1,2 1 Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy, 2 The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract L-Proline is a multifunctional amino acid that plays an essential role in primary metabolism and physiological functions. Proline is oxidized to glutamate in the mitochondria and the FAD-containing enzyme proline oxidase (PO) catalyzes the first step in L-proline degrada- OPEN ACCESS tion pathway. Alterations in proline metabolism have been described in various human dis- Citation: Cappelletti P, Tallarita E, Rabattoni V, eases, such as hyperprolinemia type I, velo-cardio-facial syndrome/Di George syndrome, Campomenosi P, Sacchi S, Pollegioni L (2018) schizophrenia and cancer. In particular, the mutation giving rise to the substitution Leu441- Proline oxidase controls proline, glutamate, and glutamine cellular concentrations in a U87 Pro was identified in patients suffering of schizophrenia and hyperprolinemia type I. Here, glioblastoma cell line. PLoS ONE 13(4): e0196283. we report on the expression of wild-type and L441P variants of human PO in a U87 glioblas- https://doi.org/10.1371/journal.pone.0196283 toma human cell line in an attempt to assess their effect on glutamate metabolism. The sub- Editor: Suzie Chen, Rutgers University, UNITED cellular localization of the flavoenzyme is not altered in the L441P variant, for which specific STATES activity is halved compared to the wild-type PO. -
Stimulation Effects of Foliar Applied Glycine and Glutamine Amino Acids
Open Agriculture. 2019; 4: 164–172 Research Article Yaghoub Aghaye Noroozlo, Mohammad Kazem Souri*, Mojtaba Delshad Stimulation Effects of Foliar Applied Glycine and Glutamine Amino Acids on Lettuce Growth https://doi.org/10.1515/opag-2019-0016 received June 27, 2018; accepted January 20, 2019 1 Introduction Abstract: Amino acids have various roles in plant In biology, amino acids have vital roles in cell life. Amino metabolism, and exogenous application of amino acids acids are among the most important primary metabolites may have benefits and stimulation effects on plant growth within the plant cells. However, they are frequently and quality. In this study, the growth and nutrient uptake regarded as secondary metabolites, particularly in the of Romain lettuce (Lactuca sativa subvar Sahara) were case of proline, glycine and betaine amino acids. Many evaluated under spray of glycine or glutamine at different physiochemical characteristics of plant cells, tissues and concentrations of 0 (as control), 250, 500 and 1000 organs are influenced by the presence of amino acids (Rai mg.L-1, as well as a treatment of 250 mg.L-1 glycine+250 2002; Marschner 2011). They are the building units of mg.L-1 glutamine. The results showed that there was proteins, as the main component of living cells that have significant increase in leaf total chlorophyll content under vital roles in many cell metabolic reactions (Kielland 1994; Gly250+Glu250, Gly250 and Glu1000 mg.L-1treatments, and Rainbird et al. 1984; Jones and Darrah 1993). In addition, in leaf carotenoids content under 250 mg.L-1 glutamine amino acids have various important biological functions spray compared with the control plants. -
Proline- and Alanine-Rich N-Terminal Extension of the Basic Bovine P-Crystallin B1 Chains
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Volume 161, number 2 FEBS 0790 September 1983 Proline- and alanine-rich N-terminal extension of the basic bovine P-crystallin B1 chains G.A.M. Berbers, W.A. Hoekman, H. Bloemendal, W.W. de Jong, T. Kleinschmidt* and G. Braunitzer* Laboratorium voor Biochemie, Universiteit van Nijmegen, Geert Grooteplein Noord 21, 6525 EZ Nijmegen, The Netherlands and *Max-Planck-Institut ft’ir Biochemie, Abteilung Proteinchemie, D-8033 Martinsried bei Miinchen, FRG Received 22 June 1983 The amino acid sequence of the N-terminal region of the two basic bovine &crystallin B1 chains has been analyzed. The results reveal that @Bibis derived in vivo from the primary gene product @la by removal of a short N-terminal sequence. It appears that them1 chains have the same domain structure as observed in other /3- and y-crystallin chains. They have, however, a very long N-terminal extension in comparison with other &chains. This extension is mainly composed of a remarkable Pro- and Ala-rich sequence, which suggests an interaction of these structural proteins with the cytoskeleton and/or the plasma membranes of the lens cells. Protein sequence Bovine &crystallin N-terminal extension Proline- and aianine-rich Domain structure 1. INTRODUCTION 33 000 and 31000, respectively, are characteristic for fltikt, [ 111. ,8Fha is a primary gene product, from The crystallins are evolutionary highly conserv- which ,8&b arises by post-translational modifica- ed structural eye lens proteins, which can be divid; tion [lo-121, most probably a proteolytic step ed into 4 classes: (Y-,,&, y- and t-crystallin [ 11.