Pharmacological Studies on a Locust Neuromuscular Preparation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electrophysiologic Evidence for Increased Endogenous Gabaergic but Not Glycinergic Inhibitory Tone in the Rat Spinal Nerve Ligation Model of Neuropathy Vesa K
Anesthesiology 2001; 94:333–9 © 2001 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Electrophysiologic Evidence for Increased Endogenous GABAergic but Not Glycinergic Inhibitory Tone in the Rat Spinal Nerve Ligation Model of Neuropathy Vesa K. Kontinen, M.D., Ph.D.,* Louise C. Stanfa, Ph.D.,† Amlan Basu,‡ Anthony H. Dickenson, Ph.D.§ Background: Changes in the inhibitory activity mediated by There is evidence that both GABA and glycinergic inter- ␥-aminobutyric acid (GABA) and glycine, acting at spinal GABA A neurons are preferentially associated with the control of receptors and strychnine-sensitive glycine receptors, are of in- 6–9 terest in the development of neuropathic pain. There is ana- low-threshold afferent input to the spinal cord. Con- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/94/2/333/402482/0000542-200102000-00024.pdf by guest on 29 September 2021 tomic evidence for changes in these transmitter systems after sistent with this, intrathecal administration of the 10 nerve injuries, and blocking either GABAA or glycine receptors GABAA-receptor antagonist bicuculline or the glycine- has been shown to produce allodynia-like behavior in awake receptor antagonist strychnine10,11 produces segmen- normal animals. tally localized tactile allodynia-like behavior in conscious Methods: In this study, the possible changes in GABAergic and glycinergic inhibitory activity in the spinal nerve ligation rats and increased responses to mechanical stimulation 12 model of neuropathic pain were studied by comparing the in anesthetized cats. Intrathecal strychnine has also effects of the GABAA-receptor antagonist bicuculline and the been shown to produce in anesthetized rats reflex re- glycine-receptor antagonist strychnine in neuropathic rats to sponses similar to those produced by nociceptive stim- their effects in sham-operated and nonoperated control rats. -
Unnamed Document
Mutations M287L and Q266I in the Glycine Receptor ␣1 Subunit Change Sensitivity to Volatile Anesthetics in Oocytes and Neurons, but Not the Minimal Alveolar Concentration in Knockin Mice Cecilia M. Borghese, Ph.D.,* Wei Xiong, Ph.D.,† S. Irene Oh, B.S.,‡ Angel Ho, B.S.,§ S. John Mihic, Ph.D.,ʈ Li Zhang, M.D.,# David M. Lovinger, Ph.D.,** Gregg E. Homanics, Ph.D.,†† Edmond I. Eger 2nd, M.D.,‡‡ R. Adron Harris, Ph.D.§§ ABSTRACT What We Already Know about This Topic • Inhibitory spinal glycine receptor function is enhanced by vol- Background: Volatile anesthetics (VAs) alter the function of atile anesthetics, making this a leading candidate for their key central nervous system proteins but it is not clear which, immobilizing effect if any, of these targets mediates the immobility produced by • Point mutations in the ␣1 subunit of glycine receptors have been identified that increase or decrease receptor potentiation VAs in the face of noxious stimulation. A leading candidate is by volatile anesthetics the glycine receptor, a ligand-gated ion channel important for spinal physiology. VAs variously enhance such function, and blockade of spinal glycine receptors with strychnine af- fects the minimal alveolar concentration (an anesthetic What This Article Tells Us That Is New EC50) in proportion to the degree of enhancement. • Mice harboring specific mutations in their glycine receptors Methods: We produced single amino acid mutations into that increased or decreased potentiation by volatile anesthetic in vitro did not have significantly altered changes in anesthetic the glycine receptor ␣1 subunit that increased (M287L, third potency in vivo transmembrane region) or decreased (Q266I, second trans- • These findings indicate that this glycine receptor does not me- membrane region) sensitivity to isoflurane in recombinant diate anesthetic immobility, and that other targets must be receptors, and introduced such receptors into mice. -
(12) United States Patent (10) Patent No.: US 8,822,539 B2 Jensen (45) Date of Patent: Sep
USOO8822.539B2 (12) United States Patent (10) Patent No.: US 8,822,539 B2 Jensen (45) Date of Patent: Sep. 2, 2014 (54) COMBINATION THERAPIES: INHIBITORS Bialer et al., “Progress report on new antiepileptic drugs: a Summary OF GABA TRANSAMINASE AND NKCC1 of the Seventh Eilat Conference (EILATVII).” Epilepsy Res., 61:1- 48, 2004 (Abstract only). (75) Inventor: Frances E. Jensen, Boston, MA (US) Clift and Silverman, “Synthesis and Evaluation of Novel Aromatic Substrates and Competitive Inhibitors of GABA Aminotransferase.” (73) Assignee: Children's Medical Center Bioorg. Med. Chem. Left., 18:3122-3125, 2008. Crewther et al., “Potassium Channel and NKCC Cotransporter Corporation, Boston, MA (US) Involvement in Ocular Refractive Control Mechanisms. PlosOne, 3:e2839, 2008. (*) Notice: Subject to any disclaimer, the term of this Cubells et al., “In vivo action of enzyme-activated irreversible inhibi patent is extended or adjusted under 35 tors of glutamic acid decarboxylase and gamma-aminobutyric acid U.S.C. 154(b) by 149 days. transaminase in retina vs. brain.” J. Pharmacol. Exp. Ther. 238:508 514, 1986 (Abstract only). (21) Appl. No.: 13/069,311 Duboc et al., “Vigabatrin, the GABA-transaminase inhibitor, dam ages cone photoreceptors in rats.” Ann. Neurol. 55:695-705, 2004 (22) Filed: Mar 22, 2011 (Abstract only). Dzhala et al., “Bumetanide enhances phenobarbital efficacy in a (65) Prior Publication Data neonatal seizure model.” Ann. Neurol. 63:222-235, 2008 (Abstract US 2011/0237554 A1 Sep. 29, 2011 only). Dzhala et al., “NKCC1 transporter facilitates seizures in the devel oping brain.” Nature Med., 11:1205-1213, 2005 (Abstract only). Follett et al., “Glutamate Receptor-Mediated Oligodendrocyte Tox Related U.S. -
Dynamic Regulation of Synaptic GABA Release by the Glutamate-Glutamine Cycle in Hippocampal Area CA1
The Journal of Neuroscience, August 16, 2006 • 26(33):8537–8548 • 8537 Development/Plasticity/Repair Dynamic Regulation of Synaptic GABA Release by the Glutamate-Glutamine Cycle in Hippocampal Area CA1 Shu-Ling Liang,1 Gregory C. Carlson,1 and Douglas A. Coulter1,2 1Division of Neurology and the Pediatric Regional Epilepsy Program, Children’s Hospital of Philadelphia, and 2Departments of Pediatrics, Neurology, and Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 Vesicular GABA and intraterminal glutamate concentrations are in equilibrium, suggesting inhibitory efficacy may depend on glutamate availability. Two main intraterminal glutamate sources are uptake by neuronal glutamate transporters and glutamine synthesized through the astrocytic glutamate-glutamine cycle. We examined the involvement of the glutamate-glutamine cycle in modulating GABAergic synaptic efficacy. In the absence of neuronal activity, disruption of the glutamate-glutamine cycle by blockade of neuronal glutamine transport with ␣-(methylamino) isobutyric acid (MeAIB; 5 mM) or inhibition of glutamine synthesis in astrocytes with methionine sulfoximine (MSO; 1.5 mM) had no effect on miniature IPSCs recorded in hippocampal area CA1 pyramidal neurons. How- ever, after a period of moderate synaptic activity, application of MeAIB, MSO, or dihydrokainate (250 M; an astrocytic glutamate transporter inhibitor) significantly reduced evoked IPSC (eIPSC) amplitudes. The MSO effect could be reversed by exogenous application of glutamine (5 mM), whereas glutamine could not rescue the eIPSC decreases induced by the neuronal glutamine transporter inhibitor MeAIB. The activity-dependent reduction in eIPSCs by glutamate-glutamine cycle blockers was accompanied by an enhanced blocking effect of the low-affinity GABAA receptor antagonist, TPMPA [1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid], consistent with diminished GABA release. -
Neurotransmitters-Drugs Andbrain Function.Pdf
Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Neurotransmitters, Drugs and Brain Function Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Neurotransmitters, Drugs and Brain Function Edited by R. A. Webster Department of Pharmacology, University College London, UK JOHN WILEY & SONS, LTD Chichester Á New York Á Weinheim Á Brisbane Á Singapore Á Toronto Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Copyright # 2001 by John Wiley & Sons Ltd. Bans Lane, Chichester, West Sussex PO19 1UD, UK National 01243 779777 International ++44) 1243 779777 e-mail +for orders and customer service enquiries): [email protected] Visit our Home Page on: http://www.wiley.co.uk or http://www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P0LP,UK, without the permission in writing of the publisher. Other Wiley Editorial Oces John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA WILEY-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany John Wiley & Sons Australia, Ltd. -
Methionine Sulfoximine: a Novel Anti Inflammatory Agent
Wayne State University Wayne State University Dissertations January 2018 Methionine Sulfoximine: A Novel Anti Inflammatory Agent Tyler Peters Wayne State University, [email protected] Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Biochemistry Commons Recommended Citation Peters, Tyler, "Methionine Sulfoximine: A Novel Anti Inflammatory Agent" (2018). Wayne State University Dissertations. 2124. https://digitalcommons.wayne.edu/oa_dissertations/2124 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. METHIONINE SULFOXIMINE: A NOVEL ANTI-INFLAMMATORY AGENT by TYLER J. PETERS DISSERTATION Submitted to the Graduate School of Wayne State University – School of Medicine Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOHPY 2018 MAJOR: BIOCHEMISTRY & MOL. BIOLOGY Approved By: __________________________________________ Advisor Date DEDICATION This work is dedicated to my family. I wouldn’t have made it this far without your unconditional love and support. ii ACKNOWLEDGEMENTS Thank you Dr. Brusilow, I consider myself very fortunate for having the privilege of working in the laboratory of Dr. William S.A. Brusilow these past few years. Under his mentorship, my scientific autonomy was always respected, and my opinions were always valued with consideration. I am thankful for his guidance and support as an advisor; I truly admire his patience and envy his calm demeanor. He exemplifies scientific integrity, and his dedication to develop MSO has inspired me. I had never experienced consistent failure in any aspect of life before encountering scientific research; at times I felt that Dr. -
Aspartic Acid Agonist, in the Mammalian Striatum
The Journal of Neuroscience August 1986, 6(8): 2226-2234 /II Vitro Release and Electrophysiological Effects In Situ of Homocysteic Acid, An Endogenous N-Methyl-(D)-aspartic Acid Agonist, in the Mammalian Striatum Kim Quang DO,* Paul L. Herrling,? Peter Streit,* Waldemar A. Turski,“fsl and Michel Cuenod* *Brain Research Institute, University of Zurich, Zurich, Switzerland, and j-Wander Research Institute, Bern, Switzerland A potassium-induced, calcium-dependent release of endogenous fects of microiontophoretically applied (L)-HCA on membrane homocysteic acid (HCA) from rat striatal slices was demonstrat- potential and cortically evoked EPSPsin cat caudate neurons, ed. A precolumn derivatization high-performance liquid chro- and the pharmacologicalspecificity of (L)-HCA in this structure. matography method was developed that allowed quantitative de- termination of sulfur-containing amino acids at the picomole level. Materials and Methods Intracellular recordings from cat caudate neurons during si- Materials multaneous microiontophoretic application of drugs and electri- cal stimulation of the corticocaudate pathway showed that (L> Release HCA evoked a depolarization pattern similar to that induced 4-N,N-Dimethylamino-azobenzene-4’-isotbiocyanate (DABITC) was ob- by %methyl-(D>aspartic acid (NMDA), and both these depo- tained from Fluka (Buchs, CH) and recrystallized in acetone (Merck, larizations could be selectively inhibited by a specific NMDA Darmstadt, FRG). All other solvents used were ofcommercial analytical antagonist, (D)-Z-amino-7-phosphonoheptanoicacid [(D)-AP-~]. grade from Merck or Fluka. The internal standard (D,L)-2-amino-7- A selective antagonismof (rJ-HCA-induced depolarizations by sulfonoheptanoic acid (AS-7) was a generous gift of Dr. J. C. Watkins. (L)-homocysteic acid [(L)-HCA], (L)-cysteine sulfinic acid [(L)-CSA], (L)- (D>AP-~ was confirmed in quantitative experiments with the cysteic acid [(L)-CA], and veratrine were purchased from Sigma (St. -
Treatment Protocol Copyright © 2018 Kostoff Et Al
Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al PREVENTION AND REVERSAL OF ALZHEIMER'S DISEASE: TREATMENT PROTOCOL by Ronald N. Kostoffa, Alan L. Porterb, Henry. A. Buchtelc (a) Research Affiliate, School of Public Policy, Georgia Institute of Technology, USA (b) Professor Emeritus, School of Public Policy, Georgia Institute of Technology, USA (c) Associate Professor, Department of Psychiatry, University of Michigan, USA KEYWORDS Alzheimer's Disease; Dementia; Text Mining; Literature-Based Discovery; Information Technology; Treatments Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al CITATION TO MONOGRAPH Kostoff RN, Porter AL, Buchtel HA. Prevention and reversal of Alzheimer's disease: treatment protocol. Georgia Institute of Technology. 2018. PDF. https://smartech.gatech.edu/handle/1853/59311 COPYRIGHT AND CREATIVE COMMONS LICENSE COPYRIGHT Copyright © 2018 by Ronald N. Kostoff, Alan L. Porter, Henry A. Buchtel Printed in the United States of America; First Printing, 2018 CREATIVE COMMONS LICENSE This work can be copied and redistributed in any medium or format provided that credit is given to the original author. For more details on the CC BY license, see: http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License<http://creativecommons.org/licenses/by/4.0/>. DISCLAIMERS The views in this monograph are solely those of the authors, and do not represent the views of the Georgia Institute of Technology or the University of Michigan. This monograph is not intended as a substitute for the medical advice of physicians. The reader should regularly consult a physician in matters relating to his/her health and particularly with respect to any symptoms that may require diagnosis or medical attention. -
Endogenous Metabolites: JHU NIMH Center Page 1
S. No. Amino Acids (AA) 24 L-Homocysteic acid 1 Glutaric acid 25 L-Kynurenine 2 Glycine 26 N-Acetyl-Aspartic acid 3 L-arginine 27 N-Acetyl-L-alanine 4 L-Aspartic acid 28 N-Acetyl-L-phenylalanine 5 L-Glutamine 29 N-Acetylneuraminic acid 6 L-Histidine 30 N-Methyl-L-lysine 7 L-Isoleucine 31 N-Methyl-L-proline 8 L-Leucine 32 NN-Dimethyl Arginine 9 L-Lysine 33 Norepinephrine 10 L-Methionine 34 Phenylacetyl-L-glutamine 11 L-Phenylalanine 35 Pyroglutamic acid 12 L-Proline 36 Sarcosine 13 L-Serine 37 Serotonin 14 L-Tryptophan 38 Stachydrine 15 L-Tyrosine 39 Taurine 40 Urea S. No. AA Metabolites and Conjugates 1 1-Methyl-L-histidine S. No. Carnitine conjugates 2 2-Methyl-N-(4-Methylphenyl)alanine 1 Acetyl-L-carnitine 3 3-Methylindole 2 Butyrylcarnitine 4 3-Methyl-L-histidine 3 Decanoyl-L-carnitine 5 4-Aminohippuric acid 4 Isovalerylcarnitine 6 5-Hydroxylysine 5 Lauroyl-L-carnitine 7 5-Hydroxymethyluracil 6 L-Glutarylcarnitine 8 Alpha-Aspartyl-lysine 7 Linoleoylcarnitine 9 Argininosuccinic acid 8 L-Propionylcarnitine 10 Betaine 9 Myristoyl-L-carnitine 11 Betonicine 10 Octanoylcarnitine 12 Carnitine 11 Oleoyl-L-carnitine 13 Creatine 12 Palmitoyl-L-carnitine 14 Creatinine 13 Stearoyl-L-carnitine 15 Dimethylglycine 16 Dopamine S. No. Krebs Cycle 17 Epinephrine 1 Aconitate 18 Hippuric acid 2 Citrate 19 Homo-L-arginine 3 Ketoglutarate 20 Hydroxykynurenine 4 Malate 21 Indolelactic acid 5 Oxalo acetate 22 L-Alloisoleucine 6 Succinate 23 L-Citrulline 24 L-Cysteine-glutathione disulfide Semi-quantitative analysis of endogenous metabolites: JHU NIMH Center Page 1 25 L-Glutathione, reduced Table 1: Semi-quantitative analysis of endogenous molecules and their derivatives by Liquid Chromatography- Mass Spectrometry (LC-TripleTOF “or” LC-QTRAP). -
Opposing Effects of Dehydroepiandrosterone And
European Journal of Endocrinology (2000) 143 687±695 ISSN 0804-4643 EXPERIMENTAL STUDY Opposing effects of dehydroepiandrosterone and dexamethasone on the generation of monocyte-derived dendritic cells M O Canning, K Grotenhuis, H J de Wit and H A Drexhage Department of Immunology, Erasmus University Rotterdam, The Netherlands (Correspondence should be addressed to H A Drexhage, Lab Ee 838, Department of Immunology, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands; Email: [email protected]) Abstract Background: Dehydroepiandrosterone (DHEA) has been suggested as an immunostimulating steroid hormone, of which the effects on the development of dendritic cells (DC) are unknown. The effects of DHEA often oppose those of the other adrenal glucocorticoid, cortisol. Glucocorticoids (GC) are known to suppress the immune response at different levels and have recently been shown to modulate the development of DC, thereby influencing the initiation of the immune response. Variations in the duration of exposure to, and doses of, GC (particularly dexamethasone (DEX)) however, have resulted in conflicting effects on DC development. Aim: In this study, we describe the effects of a continuous high level of exposure to the adrenal steroid DHEA (1026 M) on the generation of immature DC from monocytes, as well as the effects of the opposing steroid DEX on this development. Results: The continuous presence of DHEA (1026 M) in GM-CSF/IL-4-induced monocyte-derived DC cultures resulted in immature DC with a morphology and functional capabilities similar to those of typical immature DC (T cell stimulation, IL-12/IL-10 production), but with a slightly altered phenotype of increased CD80 and decreased CD43 expression (markers of maturity). -
The Syntheses of Β-Lactam Antibiotics from 3-Formylcephalosporins As the Key-Intermediates
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/19082 Please be advised that this information was generated on 2021-10-03 and may be subject to change. The Syntheses of β-Lactam Antibiotics from 3-Formylcephalosporins as the Key-intermediates Een wetenschappelijke proeve op het gebied van de Natuurwetenschappen, Wiskunde en Informatica Proefschrift ter verkrijging van de graad van doctor aan de Katholieke Universiteit Nijmegen, volgens besluit van het College van Decanen in het openbaar te verdedigen op woensdag 6 februari 2002 des namiddags om 1.30 uur precies door Rolf Keltjens Geboren op 9 april 1972 te Horst Promotor Prof. dr. B. Zwanenburg Copromotor Dr. A.J.H. Klunder Manuscriptcommissie Dr. E. de Vroom (DSM Anti-Infectives, Delft) Dr. J. Verweij (voorheen DSM Anti-Infectives, Delft) Prof. dr. ir. J.C.M. van Hest The research described in this PhD thesis was part of the Cluster Project "Fine- Chemistry" and was financially supported by DSM (Geleen, The Netherlands) and the Dutch Ministry of Economical Affairs (Senter). ISBN 90-9015389-6 Omslag: Penicillium chrysogenum (copyright DSM N.V.) "Experiment is the sole interpreter of the artifices of Nature" Leonardo da Vinci (1452-1519) Aan mijn ouders Paranimfen René Gieling Sander Hornes VOORWOORD Als het manuscript nagenoeg gereed is en het geheel klaar is voor verzending naar de drukker, is het ook de hoogste tijd om de mensen met wie je vier jaar lang intensief hebt samengewerkt te bedanken. -
Long-Lasting Analgesic Effect of the Psychedelic Drug Changa: a Case Report
CASE REPORT Journal of Psychedelic Studies 3(1), pp. 7–13 (2019) DOI: 10.1556/2054.2019.001 First published online February 12, 2019 Long-lasting analgesic effect of the psychedelic drug changa: A case report GENÍS ONA1* and SEBASTIÁN TRONCOSO2 1Department of Anthropology, Philosophy and Social Work, Universitat Rovira i Virgili, Tarragona, Spain 2Independent Researcher (Received: August 23, 2018; accepted: January 8, 2019) Background and aims: Pain is the most prevalent symptom of a health condition, and it is inappropriately treated in many cases. Here, we present a case report in which we observe a long-lasting analgesic effect produced by changa,a psychedelic drug that contains the psychoactive N,N-dimethyltryptamine and ground seeds of Peganum harmala, which are rich in β-carbolines. Methods: We describe the case and offer a brief review of supportive findings. Results: A long-lasting analgesic effect after the use of changa was reported. Possible analgesic mechanisms are discussed. We suggest that both pharmacological and non-pharmacological factors could be involved. Conclusion: These findings offer preliminary evidence of the analgesic effect of changa, but due to its complex pharmacological actions, involving many neurotransmitter systems, further research is needed in order to establish the specific mechanisms at work. Keywords: analgesic, pain, psychedelic, psychoactive, DMT, β-carboline alkaloids INTRODUCTION effects of ayahuasca usually last between 3 and 5 hr (McKenna & Riba, 2015), but the effects of smoked changa – The treatment of pain is one of the most significant chal- last about 15 30 min (Ott, 1994). lenges in the history of medicine. At present, there are still many challenges that hamper pain’s appropriate treatment, as recently stated by American Pain Society (Gereau et al., CASE DESCRIPTION 2014).