History of Cryptography and Cryptanalysis Pdf

Total Page:16

File Type:pdf, Size:1020Kb

History of Cryptography and Cryptanalysis Pdf History of cryptography and cryptanalysis pdf Continue Aspect of history This article may contain original research. Please improve it by checking the claims made and adding links. Applications consisting only of original research must be removed. (January 2018) (Learn how and when to delete this template message) Cryptography, the use of codes and ciphers to protect secrets, began thousands of years ago. Until recent decades, it was a story about what might be called classical cryptography - that is, encryption techniques that use pen and paper, or perhaps simple mechanical means. In the early 20th century, the invention of sophisticated mechanical and electromechanical machines, such as the Enigma rotary machine, provided more sophisticated and efficient encryption tools; and the subsequent introduction of electronics and computing has allowed for the development of more complex circuits, most of which are completely unprocessed for pen and paper. In parallel with the development of cryptography is the development of cryptoanalysis - hacking codes and ciphers. Detection and application, early on, frequency analysis to read encrypted messages, sometimes changed the course of history. Thus, the telegram provoked the United States to enter World War I; and allied reading of the ciphers of Nazi Germany shortening world war II, in some estimates as much as two years. Until the 1960s, safe cryptography was largely the prerogative of governments. Two events have since brought him directly into the public domain: the creation of the Public Encryption Standard (DES), and the invention of public key cryptography. Ancient Scytale, an early device for encryption. The earliest known use of cryptography is found in non-standard hieroglyphics carved into the wall of the tomb from the Old Kingdom of Egypt around 1900 BC However, these are not serious attempts of secret messages, but attempts of riddles, intrigues or even entertainment for literate viewers. Some clay tablets from Mesopotamia are somewhat later explicitly intended to protect information - one from around 1500 BC was found to encrypt the artisan's recipe for pottery glaze, presumably commercially valuable. In addition, Jewish scientists used simple monoalfabetic replacement ciphers (such as the Atbash cipher) starting, perhaps from about 600 BC to 500 BC, in India around 400 BC to 200 AD, Mlecchita vikalpa or the art of understanding writing in cipher, and the spelling of words was specially documented in Kama Sutra with the aim of communicating between lovers. It's also probably a simple replacement cipher. Parts of the Egyptian demotic Greek magical papiri were written with a cipher. The ancient Greeks are said to know the ciphers. Scytale transposition cipher was Spartan military, but it is not known definitively whether there was a scytale for encryption, authentication or avoiding bad omens in speech. Herodotus tells us about secret messages physically hidden under wax on wooden plates or as a tattoo on a slave's head, hidden from outgrown hairs, although they are not properly examples of cryptography per se, since the message is only known to be read directly; it's known as steganography. Another Greek method was developed by Polybius (now called Polybius Square). The Romans knew something about cryptography (such as Caesar's cipher and its variations). Medieval cryptography The first page of al-Kindi's manuscript on cryptographic messages, containing the first descriptions of cryptoanalysis and frequency analysis. See also: The classic cipher and manuscript of Voynich David Kahn notes in Codebreakers that modern cryptology originated among Arabs, the first people to systematically document cryptoanalytic methods. Al-Khalil (717-786) wrote the Book of Cryptographic Messages, which contains the first use of permutations and combinations to list all possible Arabic words with and without vowels. The invention of the frequency analysis method to crack monoalfabetic ciphers replacing Al-Kindi, an Arab mathematician, around 800 AD, proved to be the most significant crypto-analytical progress before World War II. Al-Kindi wrote a book on cryptography called Risalah fi Istikhraj al-Mu'amma (Manuscript for the Decipheric Messages), in which he described the first cryptoanalytic methods, including polyalphabetic ciphers, cipher classification, Arabic phonetics and syntax, and most importantly, gave the first descriptions on frequency analysis. It also covered methods of enciference, cryptoanalysis of some bonds and statistical analysis of letters and combinations of letters in Arabic. An important contribution by Ibn Adlan (1187-1268) was the sample size for the use of frequency analysis. In early medieval England, between 800 and 1100, replacement ciphers were often used by scribes as a playful and clever way of entangling notes, puzzles and colophons. The ciphers are usually quite simple, but sometimes they deviate from the usual pattern, adding to their complexity, and perhaps also to their complexity. During this period, the West had vital and significant cryptographic experiments. Ahmad al-Allkashandi (1355-1418) wrote Subh al-Sha, a 14-volume encyclopedia that included a section on cryptology. This information was attributed to Ibn al-Durayhimu, who lived from 1312 AD to 1361, but whose cryptography work was lost. The list of ciphers in this work included both substitution and transposition and a cipher with multiple substitutions for each letter of simple text (later called homophonic replacement). Also traced Ibn al-Durayhim is an exposition and worked an example of cryptoanalysis, including the use of tables of letter frequencies and sets of letters that can not happen together in one word. The earliest example of the homophonic replacement cipher is the cipher used by the Duke of Mantua in the early 1400s. The cipher is ahead of time because it combines monoalfabetic and polyalphabetic features. Essentially, all ciphers remained vulnerable to the cryptoanalytic technique of frequency analysis until the development of polyalphabet cipher, and many remained so after that. The polyalphabetic cipher was most clearly explained by Leon Battista Alberti around 1467 AD, for which he was called the father of Western cryptology. Johannes Tritemius in his work Polygraphia invented the tabula recta, the most important component of the cipher Vigener. Trithemium also wrote a steganography. French cryptographer Blaise de Vigener developed a practical polyalphabetic system that bears his name, the Cipher Cigener. In Europe, cryptography has become (secretly) more important as a result of political competition and religious revolution. For example, in Europe during and after the Renaissance, citizens of various Italian states, including the pontifical states and the Roman Catholic Church, were responsible for the rapid spread of cryptographic methods, few of which reflected the understanding (or even knowledge) of Alberti's polyalphabetic progression. Advanced ciphers, even after Alberti, were not as advanced as their inventors/developers/users claimed (and probably even they themselves believed). They often broke down. This over- optimism may be inherent in cryptography, because it was then - and remains today - difficult in principle to know how vulnerable your own system is. In the absence of knowledge, guesswork and hope are predictably common. Cryptography, cryptanalysis and betrayal of the secret agent/courier were featured in The Babington story during the reign of queen Elizabeth I, which led to the execution of Mary, queen of Scotland. Robert Hook suggested in the chapter of Dr. Dee's Book of Spirits that John Dee used triteian steganography to hide his communication with queen Elizabeth I. He and his family created what is known as the Great Cipher because it remained unresolved from its original use until 1890, when the French military cryptoanalyst Etienne Baseri decided it. The encrypted message of the times of the Man in the Iron Mask (deciphered shortly before 1900 by Etienne Bazeri) shed some, unfortunately, neo-icom light on the the personality of this real, if legendary and unhappy, prisoner. Outside Europe, after the Mongols brought the End of the Islamic Golden Age to an end, cryptography remained relatively undeveloped. Cryptography in Japan does not seem to have been used until about 1510, and advanced methods were not known until after the discovery of the country in the West, dating back to the 1860s. Cryptography from 1800 to World War II Home article: World War I cryptography Although cryptography has a long and complex history, it was not until the 19th century that it developed nothing more than special approaches to encryption or cryptoanalysis (the science of finding weaknesses in cryptosystems). Examples include Charles Babbig's work of the Crimean War era on the mathematical cryptoanalysis of polyalphabetic ciphers, reworked and published a little later by Prussian Friedrich Kasischi. Understanding cryptography at this time usually consisted of having a hard time winning the rules of the thumb; see, for example, the cryptographic works of Augustin Kerkhoff in the 19th century. Edgar Allan Poe used systematic methods to solve ciphers in the 1840s. Specifically, he posted a notice of his abilities in the Philadelphia newspaper Alexander's Weekly (Express) Messenger, inviting him to submit ciphers, of which he began to address almost all. Its success has caused a public outcry for months. He later wrote an essay on cryptography techniques that proved
Recommended publications
  • THE-POLISH-TRACE-Ebook.Pdf
    8 THE POLISH TRACE COMPOSED FROM COMMONLY AVAILABLE SOURCES BY LECH POLKOWSKI FOR IJCRS2017 FOREWORD It is a desire of many participants of conferences to learn as much as possible about the history and culture of he visited country and place and organizers try to satisfy this desire by providing excursions into attractive places and sites. IJCRS2017 also tries to take participants to historic sites of Warmia and Mazury and to show elements of local culture. As an innovation, we propose a booklet showing some achievements of Polish scientists and cryptographers, no doubt many of them are known universally, but some probably not. What bounds all personages described here is that they all suffered due to world wars, th efirst and the second. These wars ruined their homes, made them refugees and exiles, destroyed their archives and libraries, they lost many colleagues, friends and students but were lucky enough to save lives and in some cases to begin the career overseas. We begin with the person of Jan Czochralski, world famous metallurgist, discoverer of the technique of producing metal monocrystals `the Czochralski methode’ and inventor of duraluminum and the `bahnalloy’ who started his career and obtained its heights in Germany, later returned to Poland, became a professor at the Warsaw Polytechnical, played an important role in cultural life of Warsaw, lived in Warsaw through the second world war and the Warsaw Uprising of August-September 1944 and after the war was accused of cooperating ith occupying German forces and though judged innocent was literally erased from the public life and any information about him obliterated.
    [Show full text]
  • The Imagination Game Storia E Fantasia in the Imitation Game
    The Imagination Game storia e fantasia in The Imitation Game Cap. 2: Bletchley Park e Ultra Giovanni A. Cignoni – Progetto HMR 1/28 Bletchley Park e Ultra • Un’organizzazione poderosa • Bletchley Park • I luoghi, le strutture, le procedure • I meccanismi e gli appoggi • Il personale, le (tante) donne di BP • Ultra • Cos’era, come era nascosto • L’impatto sul conflitto, episodi e numeri Giovanni A. Cignoni – Progetto HMR 2/28 A lezione dai Polacchi • 1919, Biuro Szyfrów • Militari, Kowalewski, e matematici, Mazurkiewicz, Sierpiński, Leśniewski • Nel 1938 il 75% dei messaggi tedeschi intercettati era decifrato (Rejewski, Zygalski, Różycki) • Dopo il ’39 PC Bruno, Cadix, Boxmoor • In Inghilterra • Room40 (1914), GC&CS (1919), BP (1938) • Parigi (gennaio ’39), con Francesi e Polacchi • Pyry vicino Varsavia (luglio ’39) Giovanni A. Cignoni – Progetto HMR 3/28 Un posto strategico Bletchley Park - Gayhurst - Wavendon - Stanmore - Eastcote - Adstock Cambridge Banbury Letchworth Oxford London Giovanni A. Cignoni – Progetto HMR 4/28 Bletchley Park, 1942ca Giovanni A. Cignoni – Progetto HMR 5/28 Nel film, ci somiglia... Giovanni A. Cignoni – Progetto HMR 6/28 … ma non è Giovanni A. Cignoni – Progetto HMR 7/28 Il nume tutelare • 1941.10.21: Action this day! • In un momento di successo • Dopo una visita di Churchill • Le Bombe ci sono, mancano persone • Garanzie per i tecnici BTM • Personale per la catena • Intercettazione in grande • Risorse per una pesca industriale • Un po’ come “Echelon” Giovanni A. Cignoni – Progetto HMR 8/28 Il personale • Una grande industria • Da 9000 a 10000 persone, centinaia di macchine • Piuttosto stabile, circa 12000 nomi • Escluso l’indotto, fornitori e logistica • Reclutamento • Inizialmente diretto, da persona a persona • Poi attraverso controlli e selezioni metodiche • Soprattutto nell’ambito delle leve militari • Ma con un occhio anche ai civili Giovanni A.
    [Show full text]
  • Indian Hieroglyphs
    Indian hieroglyphs Indus script corpora, archaeo-metallurgy and Meluhha (Mleccha) Jules Bloch’s work on formation of the Marathi language (Bloch, Jules. 2008, Formation of the Marathi Language. (Reprint, Translation from French), New Delhi, Motilal Banarsidass. ISBN: 978-8120823228) has to be expanded further to provide for a study of evolution and formation of Indian languages in the Indian language union (sprachbund). The paper analyses the stages in the evolution of early writing systems which began with the evolution of counting in the ancient Near East. Providing an example from the Indian Hieroglyphs used in Indus Script as a writing system, a stage anterior to the stage of syllabic representation of sounds of a language, is identified. Unique geometric shapes required for tokens to categorize objects became too large to handle to abstract hundreds of categories of goods and metallurgical processes during the production of bronze-age goods. In such a situation, it became necessary to use glyphs which could distinctly identify, orthographically, specific descriptions of or cataloging of ores, alloys, and metallurgical processes. About 3500 BCE, Indus script as a writing system was developed to use hieroglyphs to represent the ‘spoken words’ identifying each of the goods and processes. A rebus method of representing similar sounding words of the lingua franca of the artisans was used in Indus script. This method is recognized and consistently applied for the lingua franca of the Indian sprachbund. That the ancient languages of India, constituted a sprachbund (or language union) is now recognized by many linguists. The sprachbund area is proximate to the area where most of the Indus script inscriptions were discovered, as documented in the corpora.
    [Show full text]
  • Polska Myśl Techniczna W Ii Wojnie Światowej
    CENTRALNA BIBLIOTEKA WOJSKOWA IM. MARSZAŁKA JÓZEFA PIŁSUDSKIEGO POLSKA MYŚL TECHNICZNA W II WOJNIE ŚWIATOWEJ W 70. ROCZNICĘ ZAKOŃCZENIA DZIAŁAŃ WOJENNYCH W EUROPIE MATERIAŁY POKONFERENCYJNE poD REDAkcJą NAUkoWą DR. JANA TARCZYńSkiEGO WARSZAWA 2015 Konferencja naukowa Polska myśl techniczna w II wojnie światowej. W 70. rocznicę zakończenia działań wojennych w Europie Komitet naukowy: inż. Krzysztof Barbarski – Prezes Instytutu Polskiego i Muzeum im. gen. Sikorskiego w Londynie dr inż. Leszek Bogdan – Dyrektor Wojskowego Instytutu Techniki Inżynieryjnej im. profesora Józefa Kosackiego mgr inż. Piotr Dudek – Prezes Stowarzyszenia Techników Polskich w Wielkiej Brytanii gen. dyw. prof. dr hab. inż. Zygmunt Mierczyk – Rektor-Komendant Wojskowej Akademii Technicznej im. Jarosława Dąbrowskiego płk mgr inż. Marek Malawski – Szef Inspektoratu Implementacji Innowacyjnych Technologii Obronnych Ministerstwa Obrony Narodowej mgr inż. Ewa Mańkiewicz-Cudny – Prezes Federacji Stowarzyszeń Naukowo-Technicznych – Naczelnej Organizacji Technicznej prof. dr hab. Bolesław Orłowski – Honorowy Członek – założyciel Polskiego Towarzystwa Historii Techniki – Instytut Historii Nauki Polskiej Akademii Nauk kmdr prof. dr hab. Tomasz Szubrycht – Rektor-Komendant Akademii Marynarki Wojennej im. Bohaterów Westerplatte dr Jan Tarczyński – Dyrektor Centralnej Biblioteki Wojskowej im. Marszałka Józefa Piłsudskiego prof. dr hab. Leszek Zasztowt – Dyrektor Instytutu Historii Nauki Polskiej Akademii Nauk dr Czesław Andrzej Żak – Dyrektor Centralnego Archiwum Wojskowego im.
    [Show full text]
  • Sarasvati Civilization, Script and Veda Culture Continuum of Tin-Bronze Revolution
    Sarasvati Civilization, script and Veda culture continuum of Tin-Bronze Revolution The monograph is presented in the following sections: Introduction including Abstract Section 1. Tantra yukti deciphers Indus Script Section 2. Momentous discovery of Soma samsthā yāga on Vedic River Sarasvati Basin Section 3. Binjor seal Section 4. Bhāratīya itihāsa, Indus Script hypertexts signify metalwork wealth-creation by Nāga-s in paṭṭaḍa ‘smithy’ = phaḍa फड ‘manufactory, company, guild, public office, keeper of all accounts, registers’ Section 5. Gaṇeśa pratimā, Gardez, Afghanistan is an Indus Script hypertext to signify Superintendent of phaḍa ‘metala manufactory’ Section 6. Note on the cobra hoods of Daimabad chariot Section 7 Note on Mohenjo-daro seal m0304: phaḍā ‘metals manufactory’ Section 8. Conclusion Introduction The locus of Veda culture and Sarasvati Civilization is framed by the Himalayan ranges and the Indian Ocean. 1 The Himalayan range stretches from Hanoi, Vietnam to Teheran, Iran and defines the Ancient Maritime Tin Route of the Indian Ocean – āsetu himācalam, ‘from the Setu to Himalayaś. Over several millennia, the Great Water Tower of frozen glacial waters nurtures over 3 billion people. The rnge is still growing, is dynamic because of plate tectonics of Indian plate juttng into and pushing up the Eurasian plate. This dynamic explains river migrations and consequent desiccation of the Vedic River Sarasvati in northwestern Bhāratam. Intermediation of the maritime tin trade through the Indian Ocean and waterways of Rivers Mekong, Irrawaddy, Salween, Ganga, Sarasvati, Sindhu, Persian Gulf, Tigris-Euphrates, the Mediterranean is done by ancient Meluhha (mleccha) artisans and traders, the Bhāratam Janam celebrated by R̥ ṣi Viśvāmitra in R̥ gveda (RV 3.53.12).
    [Show full text]
  • Historical Ciphers • A
    ECE 646 - Lecture 6 Required Reading • W. Stallings, Cryptography and Network Security, Chapter 2, Classical Encryption Techniques Historical Ciphers • A. Menezes et al., Handbook of Applied Cryptography, Chapter 7.3 Classical ciphers and historical development Why (not) to study historical ciphers? Secret Writing AGAINST FOR Steganography Cryptography (hidden messages) (encrypted messages) Not similar to Basic components became modern ciphers a part of modern ciphers Under special circumstances modern ciphers can be Substitution Transposition Long abandoned Ciphers reduced to historical ciphers Transformations (change the order Influence on world events of letters) Codes Substitution The only ciphers you Ciphers can break! (replace words) (replace letters) Selected world events affected by cryptology Mary, Queen of Scots 1586 - trial of Mary Queen of Scots - substitution cipher • Scottish Queen, a cousin of Elisabeth I of England • Forced to flee Scotland by uprising against 1917 - Zimmermann telegram, America enters World War I her and her husband • Treated as a candidate to the throne of England by many British Catholics unhappy about 1939-1945 Battle of England, Battle of Atlantic, D-day - a reign of Elisabeth I, a Protestant ENIGMA machine cipher • Imprisoned by Elisabeth for 19 years • Involved in several plots to assassinate Elisabeth 1944 – world’s first computer, Colossus - • Put on trial for treason by a court of about German Lorenz machine cipher 40 noblemen, including Catholics, after being implicated in the Babington Plot by her own 1950s – operation Venona – breaking ciphers of soviet spies letters sent from prison to her co-conspirators stealing secrets of the U.S. atomic bomb in the encrypted form – one-time pad 1 Mary, Queen of Scots – cont.
    [Show full text]
  • Ces Polonais Qui Ont Décrypté Enigma
    8 HISTOIRE VIVANTE LA LIBERTÉ VENDREDI 2 DÉCEMBRE 2011 Ces Polonais qui ont décrypté Enigma GUERRE MONDIALE • Les Renseignements polonais ont apporté un soutien essentiel aux Alliés pendant le conflit mondial. Leurs réseaux étaient non seulement très efficaces, ils étaient aussi dotés de champions du déchiffrage. PASCAL FLEURY du tout envie de collaborer avec La statue de les Services spéciaux de Vichy, bronze de Ma - auxquels ils sont pourtant subor - rian Rejewski, donnés. Ils leur fournissent alors à Bydgoszcz des informations de moindre in - (Bromberg), térêt, tandis qu’ils renseignent au nord de la abondamment le Gouvernement Pologne, est de la Pologne libre à Londres et encore régulièrement fleurie en ses alliés britanniques de Bletch - souvenir de cet enfant du pays, ley Park. héros de la Seconde Guerre Grâce à sept machines mondiale. Ses faits d’armes re - Enigma reconstituées, un impor - marquables, ce brillant mathé - tant volume de dépêches alle - maticien ne les a toutefois pas mandes peut être déchiffré. Les accomplis le fusil à la main, mais messages proviennent de la Ges - en perçant le système de codage tapo, de cellules clandestines al - des fameuses machines d’en - lemandes agissant en France ou cryptage Enigma, largement uti - en Suisse, d’informateurs russes lisées par l’Allemagne nazie. Une ou encore des réseaux de l’Ab - découverte fondamentale, qui a wehr qui suivent les bateaux al - permis ensuite aux services de liés en Méditerranée et dans l’At - renseignement polonais, fran - lantique Sud. En deux ans, selon çais et britanniques de déchiffrer le spécialiste Jean Medrala, des milliers de messages secrets, l’équipe polonaise participe au et de donner ainsi un net avan - décryptage de près de 13 000 tage aux Alliés dans le conflit.
    [Show full text]
  • Pioneers in U.S. Cryptology Ii
    PIONEERS IN U.S. CRYPTOLOGY II This brochure was produced by the Center for Cryptologic History Herbert 0. Yardley 2 Herbert 0. Yardley Herbert 0 . Yardley was born in 1889 in Worthington, Indiana. After working as a railroad telegrapher and spending a year taking an English course at the University of Chicago, he became a code clerk for the Department of State. In June 1917, Yardley received a commission in the Signal Officers Reserve Corps; in July Colonel Ralph Van Deman appointed him chief of the new cryptanalytic unit, MI-8, in the Military Intelligence division. MI-8, or the Cipher Bureau, consisted of Yardley and two clerks. At MI-8's peak in November 1918, Yardley had 18 officers, 24 civilians, and 109 typists. The section had expanded to include secret inks, code and cipher compilation, communications, and shorthand. This was the first formally organized cryptanalytic unit in the history of the U.S. government. When World War I ended, the Army was considering disbanding MI-8. Yardley presented a persuasive argument for retaining it for peacetime use. His plan called for the permanent retention of a code and cipher organization funded jointly by the State and War Departments. He demonstrated that in the past eighteen months MI-8 had read almost 11,000 messages in 579 cryptographic systems. This was in addition to everything that had been examined in connection with postal censorship. On 17 May Acting Secretary of State Frank L. Polk approved the plan, and two days later the Army Chief of Staff, General Peyton C.
    [Show full text]
  • Polish Mathematicians Finding Patterns in Enigma Messages
    Fall 2006 Chris Christensen MAT/CSC 483 Machine Ciphers Polyalphabetic ciphers are good ways to destroy the usefulness of frequency analysis. Implementation can be a problem, however. The key to a polyalphabetic cipher specifies the order of the ciphers that will be used during encryption. Ideally there would be as many ciphers as there are letters in the plaintext message and the ordering of the ciphers would be random – an one-time pad. More commonly, some rotation among a small number of ciphers is prescribed. But, rotating among a small number of ciphers leads to a period, which a cryptanalyst can exploit. Rotating among a “large” number of ciphers might work, but that is hard to do by hand – there is a high probability of encryption errors. Maybe, a machine. During World War II, all the Allied and Axis countries used machine ciphers. The United States had SIGABA, Britain had TypeX, Japan had “Purple,” and Germany (and Italy) had Enigma. SIGABA http://en.wikipedia.org/wiki/SIGABA 1 A TypeX machine at Bletchley Park. 2 From the 1920s until the 1970s, cryptology was dominated by machine ciphers. What the machine ciphers typically did was provide a mechanical way to rotate among a large number of ciphers. The rotation was not random, but the large number of ciphers that were available could prevent depth from occurring within messages and (if the machines were used properly) among messages. We will examine Enigma, which was broken by Polish mathematicians in the 1930s and by the British during World War II. The Japanese Purple machine, which was used to transmit diplomatic messages, was broken by William Friedman’s cryptanalysts.
    [Show full text]
  • The the Enigma Enigma Machinemachine
    TheThe EnigmaEnigma MachineMachine History of Computing December 6, 2006 Mike Koss Invention of Enigma ! Invented by Arthur Scherbius, 1918 ! Adopted by German Navy, 1926 ! Modified military version, 1930 ! Two Additional rotors added, 1938 How Enigma Works Scrambling Letters ! Each letter on the keyboard is connected to a lamp letter that depends on the wiring and position of the rotors in the machine. ! Right rotor turns before each letter. How to Use an Enigma ! Daily Setup – Secret settings distributed in code books. ! Encoding/Decoding a Message Setup: Select (3) Rotors ! We’ll use I-II-III Setup: Rotor Ring Settings ! We’ll use A-A-A (or 1-1-1). Rotor Construction Setup: Plugboard Settings ! We won’t use any for our example (6 to 10 plugs were typical). Setup: Initial Rotor Position ! We’ll use “M-I-T” (or 13-9-20). Encoding: Pick a “Message Key” ! Select a 3-letter key (or indicator) “at random” (left to the operator) for this message only. ! Say, I choose “M-C-K” (or 13-3-11 if wheels are printed with numbers rather than letters). Encoding: Transmit the Indicator ! Germans would transmit the indicator by encoding it using the initial (daily) rotor position…and they sent it TWICE to make sure it was received properly. ! E.g., I would begin my message with “MCK MCK”. ! Encoded with the daily setting, this becomes: “NWD SHE”. Encoding: Reset Rotors ! Now set our rotors do our chosen message key “M-C-K” (13-3-11). ! Type body of message: “ENIGMA REVEALED” encodes to “QMJIDO MZWZJFJR”.
    [Show full text]
  • History Today 12 June 2018: Back to Basics
    Back to Basics June 12 The CCH has seen a few instances recently where published histories on the outside that deal with World War II cryptology have used WW II cryptologic terminology incorrectly or made other erroneous statements about the wartime effort. We decided it would be a good idea to lay out some terminology and basic facts for reference. If all this sounds like a primer, well, yes, it is. But we hope it is also an interesting primer. Both the United States and Great Britain had intensive cryptanalytic efforts before World War II, and both enjoyed a measure of success. Although both countries worked a variety of targets, the British concentrated on German cryptosystems, and the U.S. on Japanese systems. Each gave a covername to the systems they sought to solve, and, when successful against an adversary’s system, they applied a different covername to the results of the cryptanalysis. The Americans and British began cautious sharing in early 1941 of what the British called Signals Intelligence (SIGINT) and U.S. officials called Communications Intelligence (COMINT). Over the course of the war, just as the two nations grew closer in military operations, their cryptologic organizations greatly increased cooperation. Both countries had a covername that was applied to the information derived from exploiting a foreign cryptosystem. This had a double purpose; it would help keep the intelligence information within carefully controlled distribution system, and it would alert the reader to the fact that the intelligence had been obtained through an extremely fragile process and could only be discussed with others who held the proper clearances for that kind of intelligence.
    [Show full text]
  • ENIGMA Et Le Contre-Espionnage Français
    Partie française, ce qu’il faut en savoir… Notre espion chez Hitler – Paul Paillole éd Robert Laffont -1985 Lettre adressée par Hans‐Thilo Schmidt Au 75, rue de l’Université à Paris Annexe discrète du Ministère de la Guerre (2) Adresse de l’Ambassade de France à Berlin ASCHE - ENIGMA et le contre-espionnage Français Les Services Spéciaux Polonais tentent de décrypter Les Services Spéciaux Français tentent de se procurer dés 1926 les premiers messages chiffrés mécaniquement avec le concours du SR et du CE les procédés de par l'armée Allemande cryptographie en usages dans l'Armée Allemande Le 1.7.1931 Hans Thilo Schmidt adresse de Prague une lettre au 2 éme Bureau 75, rue de l'Université à Paris Cette lettre sera le point de départ de sa "collaboration" Capitaine Lacape réception de la lettre Ambassade de France à Berlin Maurice Dejean Recruteur du SR Français Stallmann nom usuel: Rodolphe Lemoine Financement sur indications du SR pseudo:: " Rex " Hans Thilo Schmidt alias " Asche" code " H.E " né le 13 mai 1888 à Berlin - Cadre au service du Chiffre Allemand (dont le frère ainé est Lt colonel chef du Service des Transmissions Il sera en mesure de livrer au Services Français, les schémas, plans et codes de la machine Enigma, en service depuis le 1er juin 1930 Cdt G Bertrand Lt col G Langer Fournira à la Pologne toutes les informations nécessaires à la réalisation des machines Groupe Polonais du PC BRUNO ainsi que leurs réglages quotidiens Lt col Guido Langer (20.10.39) 2éme Bureau : Colonel Mayer PC BRUNO BS 4 Major Ciezki -W Michalowski Chiffres - Section "D " Pazkowski-A et S Palluth-Marian Cdt Gustave Bertrand Rejewski -R Zygaslki- Jerzy Rozycki Capitaine Louis - Bintz K Gaca-R Krayewski-L Fokczynski Section Russe: Gralinski- S Szachno Smolenski Marian Rejewski Firme A.V.A.
    [Show full text]