Making Sense of Protists -Aspects of Phototaxis and Chemo Sensory Behavior

Total Page:16

File Type:pdf, Size:1020Kb

Making Sense of Protists -Aspects of Phototaxis and Chemo Sensory Behavior FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN PhD thesis Morten Moldrup Making Sense of Protists -aspects of phototaxis and chemo sensory behavior Academic advisor: Assosciate Professor Per Juel Hansen Submitted: 06/07/10 "Anyone who has never made a mistake has never tried anything new." Albert Einstein Contents Supervisor and committee 3 Papers and manuscripts included 3 Preface 4 Summary 5 Sammenfatning (Danish summary) 7 Introduction 9 Part 1 10 Part 2 12 Part 3 15 Conclusion and perspectives 16 References 18 Paper I Paper II Paper III Paper IV Paper V 2 Committee Chairman: Marianne Ellegaard, Evolution and Ecology of Aquatic Organisms. University of Copenhagen, Denmark Eric Warrant, Cell and Organism Biology, Lund University, Sweden Urban Tillmann, Alfred Wegener Institute for Polar and Marine Research, Germany Papers and manuscripts included Paper I Moldrup M, Moestrup Ø and Hansen PJ. Loss of phototaxis and degeneration of an eyespot in long term algal cultures: evidence from ultrastructure and behavior in the dinoflagellate Kryptoperidinium foliaceum. (draft manuscript) Paper II Moldrup M, Garm A. “Spectral sensitivity of the dinoflagellate Kryptoperidinium foliaceum and their reaction to physical encounters”. (draft manuscript) Paper III Poulsen LK, Moldrup M, Berge T, Hansen PJ. “Grazing of Copepod fecal pellets by dinoflagellates –a new trophic role as detritivores”. (draft manuscript) Paper IV Berge T, Poulsen LK, Moldrup M, Hansen PJ. “Bloom-forming marine microalga kills and eats copepods and other metazoans”. (draft manuscript) Paper V Hansen PJ, Moldrup M, Tarangkoon, W, Garcia, L, Daugbjerg, N, Moestrup, Ø. “Does the marine red tide ciliate Mesodinium rubrum have replaceable symbionts?” (draft manuscript) 3 Preface This thesis is written as part of the requirements for a Danish PhD degree from Department of Biology, Faculty of Science, University of Copenhagen, Denmark. I was based at the Marine Biological Laboratory (now MBS) in Helsingør funded by the Faculty of Science, University of Copenhagen. During my time as a PhD student I was associated with the PhD School of Science. During my years at MBL in my advisor Per Juel Hansen lab I have always appreciated that if you had a good idea you were always ushered to do it rather than talk about it. This has made my stay here playful and maturing. Of course I also have to acknowledge his credo “focus”, it certainly did me some good at times. It has been a pleasure and a privilege and I owe Per heartfelt thanks. I also like to thank my collaborator and at times advisor Anders Garm for his unending optimism. Many times I have been frustrated about various projects and then, for one reason or the other, had to see Anders, I always have come back to MBL with a new zest for the projects. Øjvind Moestrup deserves thanks for taking the time to teach me TEM. My co-workers on the manuscripts also deserves thank. They are: Lydia Garcia, Woraporn Tarangkoon, Terje Berge, Louise K Poulsen. Especially you Louise for being the best lab-partner ever! All the student in and out of Per’s lab also deserve thanks for a great atmosphere: Karen, Rasmus, Bettina, Lasse, Hannah and Nikolaj. Bent Vismann also needs to be acknowledged for making and drinking the worst coffee you will ever see. Minor details such as his ongoing (and never ending probably) PhD course on the inner workings and governance of university and sharp eye on experimental data may also need to be thanked. I have thoroughly enjoyed drinking my morning coffee with you and I will miss it! I had the privilege of working in Jens Høeg’s lab for a couple of months and for enduring algae in his lab he deserves huge thanks. I also owe Hans Henrik Jakobsen huge thanks for taking the time to help me and for taking me on a Cruise with R/V Dana. The Captain and crew of which also deserve thanks, especially the kitchen gang. I owe want to thank Professor Dan-Eric Nilsson who has been a partner in this project all along Unfortunately did out projects not work at all but I learned so much from you the few times we were working together. The Staff and Students at MBL also deserve thanks for making my stay here very nice indeed. My beloved M-L and the kid deserve loving thanks for the support and especially for enduring my mental absense throughout the completion of this dissertation. Helsingør June 2010 Morten Moldrup 4 Summary Phototaxis provides phytoplankton with the means to orient themselves in a light gradient. This is accomplished using an eyespot and associated organelles. For the dinoflagellate Kryptoperidinium foliaceum, which has been described as having one of the most elaborate eyespot complexes known, positive phototaxis has hitherto not been reported. In this study we show that a newly isolated strain of K. foliaceum is indeed capable of positive phototaxis with a mean vector (±95% CI) of 352°±2.2° where 0/360° indicate the direction of the light source. A study of three strains (UTEX1688, CCMP and MBL07) of Kryptoperidinium foliaceum, showed that the eyespot in two of these strains have degenerated following decades in culture. Thus, previous studies have failed to report positive phototaxis due to loss of directionality caused by the degenerated eyespot. The results are discussed in a broader context; and we conclude that studies on algal morphology and physiology may result in erroneous conclusions if based on algal cultures maintained under laboratory conditions for extended periods. Until recently it not believed to be phototactic and its spectral sensitivity therefore remains unstudied. We find the dynamic range of phototaxis to be ~2 log units. Additionally, we find indications that the spectral sensitivity behind the phototaxis is based on a single opsin with peak sensitivity around 500 nm. The spectral sensitivity agrees reasonably well with the absorption curve of a theoretical opsin. This is maintained although the expected peak in the near UV range is missing probably due to some sort of shading/filtering of harmful UV radiation. Interestingly, the phototaxis could be temporarily overruled by tactile stimuli. After physical contact with the light guide the cells escaped the area. They may do this as some sort of predator avoidance. Field studies have indicated that dinoflagellates are key degraders of copepod fecal pellets in the sea, however, direct evidence of pellet feeding by dinoflagellates have not been published prior to this study. Feeding and growth of dinoflagellates on copepod fecal pellets was studied for 3 species of mixotrophic dinoflagellates and 4 species of heterotrophic dinoflagellates using a combination of video recordings of feeding behavior and classic incubation experiments. Fecal pellets offered were produced by adult Acartia tonsa on Rhodomonas salina as a food source. One out of 3 mixotrophic species (Karlodinium armiger) and 4 out of the 6 the heterotrophic dinoflagellates (Gyrodinium dominans, G. spirale, Diplopsalis lenticula, Protoperidinium depressum) studied fed on fecal pellets. Using natural concentrations of dinoflagellates and copepod fecal pellets, ingestion rates of 0.21 and 0.11 pellets cell-1 d-1 and clearance rates of between 0.21 and 0.32 ml cell-1 d-1 were obtained for Gyrodinium spirale and Protoperidinium depressum, respectively. Pellet feeding resulted in growth rates of 0.69 and 0.08 d-1 with a growth yield of 0.58 and 0.50, for the Gyrodinium spirale and Protoperidinium depressum, respectively. The main determining factors for the grazing impact of the dinoflagellates on fecal pellets were the dinoflagellate to pellet size ratio in combination with the feeding mechanism employed by the dinoflagellate species, pellet age, and pellet concentration. This study reveals a new trophic role for dinoflagellates as detritivores, which provides a less energy consuming pathway for recycling of pellet material than the several trophic levels which are transversed through the microbial loop; and proves that dinoflagellates can function as an effective “protozoan filter” for fecal pellets in the water column. The photosynthetic dinoflagellate Karlodinium is known to form massive blooms worldwide and often these are associated with fish kills. Here we show that Karlodinum armiger can reverse the traditional trophic pathway from primary producers to copepods, by attacking, immobilizing and engulfing the much larger metazoan grazers. Copepod immobilisation is fast but dependent on cell density of K. armiger, suggesting the presence of a potent paralytic toxin. Karlodinium armiger 5 immobilises copepods by direct cell-contact, before ingesting parts of the copepod through a feeding tube. The common copepod Acartia tonsa was immobilised within a few hours and died 12 hours after exposure to ecologically relevant bloom cell densities in the laboratory. Karlodinium armiger increases its growth rate when exposed to copepods and most cells contain large visible food vacuoles following engulfment. Our results show a novel trophic pathway at the base of planktonic food web which reverses the typical flux of organic matter. Behavioural observations of K. armiger have also revealed a novel mechanism for faunal kills by this phototrophic microalga. The red tide ciliate Mesodinium rubrum (=Myrionecta rubra) is known to contain a symbiont of cryptophyte origin. Molecular data have shown that the symbiont is very closely related or similar to free-living species belonging to the “Teleaulax clade”. This suggests that the symbiont of M. rubrum is either a temporary symbiont or a quite recently established symbiont. Here we present data from a number of experiments in which we tried to replace the symbionts in M. rubrum by supplying a number of different cryptophyte species belonging to different cryptophyte clades. Growth and ingestion rates of M. rubrum fed these cryptophytes were measured. In addition, cells of M. rubrum were analyzed for type of chloroplast using transmission electron microscopy and DNA sequences of the nucleomorph LSU.
Recommended publications
  • 1. Dinoflagellate Chemotaxis and Attraction to Fish Products…………………………………………………………
    ABSTRACT CANCELLIERI, PAUL JOSEPH. Chemosensory Attraction of Pfiesteria spp. to Fish Secreta. (Under the direction of Dr. JoAnn M. Burkholder). Dinoflagellates represent a diverse group of both auxotrophic and heterotrophic protists. Most heterotrophic dinoflagellates are raptorial feeders that encounter prey using “temporal-gradient sensing” chemotaxis wherein cells move along a chemical gradient in a directed manner toward the highest concentration. Using short-term “memory” to determine the orientation of the gradient, dinoflagellates swim in a “run- and-tumble” pattern, alternating directed swimming with rapid changes in orientation. As the extracellular concentration of the attractant increases, a corresponding increase in the ratio of net-to-gross displacement results in overall movement toward the stimulus. The dinoflagellates Pfiesteria piscicida and P. shumwayae are heterotrophic estuarine species with complex life cycles that include amoeboid, flagellated, and cyst stages, that have been implicated as causative agents in numerous major fish kills in the southeastern United States These organisms show documented “ambush-predator” behavior toward live fish in culture, including rapid transformations among stages and directed swimming toward fish prey in a manner that suggests the presence of a strong signalling relationship between live fish and cells of Pfiesteria spp. Zoospores of the two species of Pfiesteria can be divided into three functional types: TOX-A designates actively toxic isolates fed on fish prey; TOX-B refers to temporarily non-toxic cultures that have recently (1 week to 6 months) been removed from fish prey (and fed alternative algal prey); and NON-IND refers to isolates without apparent ichthyotoxic ability (tested as unable to kill fish in the standardized fish bioassay process; or without access to fish for ca.
    [Show full text]
  • Gyrodinium Undulans </Emphasis> Hulburt, a Marine Dinoflagellate
    HELGOLANDER MEERESUNTERSUCHUNGEN Helgolfinder Meeresunters. 52, 1-14 (199fll Gyrodinium undulans Hulburt, a marine dinoflagellate feeding on the bloom-forming diatom Odontella aurita, and on copepod and rotifer eggs G. Drebes I & E. Schnepf 2 1Biologische Anstalt Hetgoland, Wattenmeerstation Sytt; D-25992 List/Sylt, Germany 2Zeflentehre, Fakultat fur Biologie, Universit~t Heidelberg; lm Neuenheimer Feld 230, D-fig120 Heidelberg, Germany ABSTRACT: The marine dinoflagellate Gyrodinium undulans was discovered as a feeder on the planktonic diatom Odontella aurita. Every year, during winter and early spring, a certain percent- age of cells of this bloom-forming diatom, in the Wadden Sea along the North Sea coast, was regu- larly found affected by the flagellate. Supplied with the food diatom O. aurita the dinoflagellate could be maintained successfully in clonal culture. The vegetative lite cycle was studied, mainly by light microscopy on live material, with special regard to the mode of food uptake. Food is taken up by a so-called phagopod, emerging from the antapex of the flagellate. Only Iluid or tiny prey mate- rial could be transported through the phagopod. Larger organelles like the chloroplasts of Odontefla are not ingested and are left behind in the diatom cell. Thereafter, the detached dinoflagellate re- produces by ceil division, occasionally followed by a second division. As yet, stages of sexual repro- duction and possible formation of resting cysts could not be recognized, neither from wild material nor from laboratory cultures. Palmelloid stages (sometimes with a delicate wall) occurring in ageing cultures may at least partly function as temporary resting stages. The winter species G.
    [Show full text]
  • Molecular Phylogeny and Surface Morphology of Colpodella Edax (Alveolata): Insights Into the Phagotrophic Ancestry of Apicomplexans
    J. Eukaryot. Microbiol., 50(5), 2003 pp. 334±340 q 2003 by the Society of Protozoologists Molecular Phylogeny and Surface Morphology of Colpodella edax (Alveolata): Insights into the Phagotrophic Ancestry of Apicomplexans BRIAN S. LEANDER,a OLGA N. KUVARDINA,b VLADIMIR V. ALESHIN,b ALEXANDER P. MYLNIKOVc and PATRICK J. KEELINGa aCanadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and bDepartments of Evolutionary Biochemistry and Invertebrate Zoology, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119 992, Russian Federation, and cInstitute for the Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavskaya oblast, 152742, Russian Federation ABSTRACT. The molecular phylogeny of colpodellids provides a framework for inferences about the earliest stages in apicomplexan evolution and the characteristics of the last common ancestor of apicomplexans and dino¯agellates. We extended this research by presenting phylogenetic analyses of small subunit rRNA gene sequences from Colpodella edax and three unidenti®ed eukaryotes published from molecular phylogenetic surveys of anoxic environments. Phylogenetic analyses consistently showed C. edax and the environmental sequences nested within a colpodellid clade, which formed the sister group to (eu)apicomplexans. We also presented surface details of C. edax using scanning electron microscopy in order to supplement previous ultrastructural investigations of this species using transmission electron microscopy and to provide morphological context for interpreting environmental sequences. The microscopical data con®rmed a sparse distribution of micropores, an amphiesma consisting of small polygonal alveoli, ¯agellar hairs on the anterior ¯agellum, and a rostrum molded by the underlying (open-sided) conoid.
    [Show full text]
  • VII EUROPEAN CONGRESS of PROTISTOLOGY in Partnership with the INTERNATIONAL SOCIETY of PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283484592 FINAL PROGRAMME AND ABSTRACTS BOOK - VII EUROPEAN CONGRESS OF PROTISTOLOGY in partnership with THE INTERNATIONAL SOCIETY OF PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting) Conference Paper · September 2015 CITATIONS READS 0 620 1 author: Aurelio Serrano Institute of Plant Biochemistry and Photosynthesis, Joint Center CSIC-Univ. of Seville, Spain 157 PUBLICATIONS 1,824 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Use Tetrahymena as a model stress study View project Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica View project All content following this page was uploaded by Aurelio Serrano on 04 November 2015. The user has requested enhancement of the downloaded file. VII ECOP - ISOP Joint Meeting / 1 Content VII ECOP - ISOP Joint Meeting ORGANIZING COMMITTEES / 3 WELCOME ADDRESS / 4 CONGRESS USEFUL / 5 INFORMATION SOCIAL PROGRAMME / 12 CITY OF SEVILLE / 14 PROGRAMME OVERVIEW / 18 CONGRESS PROGRAMME / 19 Opening Ceremony / 19 Plenary Lectures / 19 Symposia and Workshops / 20 Special Sessions - Oral Presentations / 35 by PhD Students and Young Postdocts General Oral Sessions / 37 Poster Sessions / 42 ABSTRACTS / 57 Plenary Lectures / 57 Oral Presentations / 66 Posters / 231 AUTHOR INDEX / 423 ACKNOWLEDGMENTS-CREDITS / 429 President of the Organizing Committee Secretary of the Organizing Committee Dr. Aurelio Serrano
    [Show full text]
  • Mixotrophy in the Dinoflagellate Prorocentrum Minim Um
    MARINE ECOLOGY PROGRESS SERIES Published June 26 Mar Ecol Prog Ser Mixotrophy in the dinoflagellate Prorocentrum minim um Diane K. Stoeckerl,*,Aishao ~il,D. Wayne Coats2,Daniel E. Gustafsonl, Michelle K. Nannenl 'University of Maryland System, Center for Environmental and Estuarine Studies. Horn Point Environmental Laboratory, Cambridge, Maryland 21613, USA 'Smithsonian Environmental Research Center, Box 28. Edgewater. Maryland 21037, USA ABSTRACT: Prol-ocentrum minimum (formerly also known as P. mariae-lebouriae) is a common bloom- forming, photosynthetic dinoflagellate in Chesapeake Bay, USA. It is also capable of ingesting other cells. In Chesapeake Bay, P. minimum usually CO-occurs with cryptophytes. Ingested cryptophyte material is observable in the dinoflagellate under an epifluorescent microscope as orange-fluorescent inclusions (OFI) During Aprll and May, the frequency of OF1 was 510% In both surface and pycnocline assemblages. In summer, up to 50'% of the P. m~njmumcontained OFI. The frequency of OF1 was positively correlated with cryptophyte abundance, but OF1 were not frequent in all populations of P minimum when cryptophyte densities were high. On-deck experimental incubations were done to determine the conditions that influence feeding. Light level and inorganic nutrient availability over the previous 24 h affect feeding. Incidence of feeding is lower when populations are maintained In the dark for 24 h than on a natural 1ight:dark cycle. Addition of n~trateand phosphate together can inhibit feeding. Ingestion has a die1 pattern, with frequency of OF1 highest in the afternoon and evening and lowest in the morning. Feeding is influenced by a complex of factors, but the spatial-temporal pattern of ingestion and the experiments both suggest that feeding is primarily a mechanism for obtaining lim~hnginorganic nutrients rather than a mechanism for supplementing carbon nutrition dur~nglight limitation.
    [Show full text]
  • Molecular Phylogeny and Surface Morphology of Colpodella Edax (Alveolata): Insights Into the Phagotrophic Ancestry of Apicomplexans
    J. Eukaryot. MicroDiol., 50(S), 2003 pp. 334-340 0 2003 by the Society of Protozoologists Molecular Phylogeny and Surface Morphology of Colpodella edax (Alveolata): Insights into the Phagotrophic Ancestry of Apicomplexans BRIAN S. LEANDER,;‘ OLGA N. KUVARDINAP VLADIMIR V. ALESHIN,” ALEXANDER P. MYLNIKOV and PATRICK J. KEELINGa Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departnzent of Botany, University of British Columbia, Vancouver, BC, V6T Iz4, Canada, and hDepartments of Evolutionary Biochemistry and Invertebrate Zoology, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, I I9 992, Russian Federation, and ‘Institute for the Biology of Inland Waters, Russian Academy qf Sciences, Borok, Yaroslavskaya oblast, I52742, Russian Federation ABSTRACT. The molecular phylogeny of colpodellids provides a framework for inferences about the earliest stages in apicomplexan evolution and the characteristics of the last common ancestor of apicomplexans and dinoflagellates. We extended this research by presenting phylogenetic analyses of small subunit rRNA gene sequences from Colpodella edax and three unidentified eukaryotes published from molecular phylogenetic surveys of anoxic environments. Phylogenetic analyses consistently showed C. edax and the environmental sequences nested within a colpodellid clade, which formed the sister group to (eu)apicomplexans. We also presented surface details of C. edax using scanning electron microscopy in order to supplement previous ultrastructural investigations of this species using transmission electron microscopy and to provide morphological context for interpreting environmental sequences. The microscopical data confirmed a sparse distribution of micropores, an amphiesma consisting of small polygonal alveoli, flagellar hairs on the anterior flagellum, and a rostrum molded by the underlying (open-sided)conoid. Three flagella were present in some individuals, a peculiar feature also found in the microgametes of some apicomplexans.
    [Show full text]
  • Predatory Protists the Two Words Used in the Main Title Grell, K.G
    Current Biology Magazine Chalker, D.L., and Yao, M.C. (2011). DNA Modes of feeding in predatory elimination in ciliates: transposon Primer domestication and genome surveillance. Annu. protists Rev. Genet. 45, 227–246. Predatory protists The two words used in the main title Grell, K.G. (1979). Cytogenetic systems and have defi nitions of convenience. Use evolution in foraminifera. J. Foram. Res. 9, 1–13. of the term ‘protist’ here refers to Hamilton, E.P., Kapusta, A., Huvos, P.E., Brian S. Leander all (mostly single-celled) eukaryotes Bidwell, S.L., Zafar, N., Tang, H., Hadjithomas, M., Krishnakumar, V., excluding the following multicellular Badger, J.H., Caler, E.V., et al. (2016). Among the most impactful events in lineages: green algae/land plants, Structure of the germline genome of the history of life was the evolutionary animals, fungi, brown algae and red Tetrahymena thermophila and relationship to the massively rearranged somatic genome. origin of phagotrophy over a billion algae. Use of the term ‘predator’ eLife 5, e19090. years ago, which triggered the ability refers to eukaryotes capable of Iwamoto, M., Hiraoka, Y., and Haraguchi, T. (2016). of a cell to ingest a particle of organic hunting and ingesting relatively Uniquely designed nuclear structures of lower eukaryotes. Curr. Opin. Cell Biol. 40, 66–73. material, whether dead or alive, as large prey cells. Different kinds of Iwamoto, M., Koujin, T., Osakada, H., Mori, C., food. Without it, there would be no predators represent vastly distantly Kojidani, T., Matsuda, A., Asakawa, H., Hiraoka, Y., and Haraguchi, T. (2015). Biased animals and no plants, let alone the related lineages across the tree of assembly of the nuclear pore complex is vast number of single-celled lineages of eukaryotes, and this general lifestyle required for somatic and germline nuclear eukaryotes that either photosynthesize can blend into the defi nitions of other differentiation in Tetrahymena.
    [Show full text]
  • Protozoologica Special Issue: Marine Heterotrophic Protists Guest Editors: John R
    Acta Protozool. (2014) 53: 39–50 http://www.eko.uj.edu.pl/ap ActA doi:10.4467/16890027AP.14.005.1442 Protozoologica Special issue: Marine Heterotrophic Protists Guest editors: John R. Dolan and David J. S. Montagnes Review paper The Acquisition of Plastids/Phototrophy in Heterotrophic Dinoflagellates Myung Gil PARK1, Miran KIM1 and Sunju KIM2 1 LOHABE, Department of Oceanography, Chonnam National University, Gwangju, Republic of Korea; 2 Research Institute for Basic Sciences, Chonnam National University, Gwangju, Republic of Korea Abstract. Several dinoflagellates are known to practice acquired phototrophy by either hosting intact algal endosymbionts or retaining plas- tids. The acquisition of phototrophy in dinoflagellates appears to occur independently over a variety of orders, rather than being restricted to any specific order(s). While dinoflagellates with intact algal cells host endosymbionts of cyanobacteria, pelagophyte, prasinophyte or dictyochophyte, most organelle-retaining dinoflagellates acquire plastids from cryptophytes. In dinoflagellates with acquired phototrophy, the mechanism by which symbionts or plastids are obtained has not been well studied at sub-cellular or ultrastructural level, and thus little is known regarding their mechanism to sequester and maintain photosynthetic structures, except for three cases, Amphidinium poecilochroum, Gymnodinium aeruginosum, and Dinophysis caudata with peduncle feeding. Dinoflagellates with acquired phototrophy display different degrees of reduction of the retained endosymbiont and organelles, ranging from those which contain intact whole algal cells (e.g. green Noc­ tiluca scintillans), to those which have retained almost a full complement of organelles (e.g., Amphidinium poecilochroum and Podolampas bipes), to those in which only the plastids remain (e.g., Amphidinium wigrense and Dinophysis spp.).
    [Show full text]
  • Chloroplast Er
    Cambridge University Press 978-0-521-68277-0 - Phycology, Fourth Edition Robert Edward Lee Index More information CHLOROPLAST E.R.: EVOLUTION OF TWO MEMBRANES Index The most important page references are in bold, and page references that contain figures are in italics. abalone, 126 algal volatile compounds, 340 Antarctic, 513–4, Cryptophyta, 325; Acanthopeltis, 99 algicide, 66, 387 cyanobacteria, 61; Phaeophyta, Acarychloris marina, 43, 90 alginic acid, 10, 427–8, 458, 459, 466, 441, 464; Rhodophyceae, 89 accumulation body, 277, 297 470 Antarctic circumpolar current, Acetabularia, 22, 175–8; acetabulum, algology, 3 513–14 177; calyculus,176; crenulata, 176; alkadienes, 211 Antarctic coastal current, 513–4 kilneri, 176; mediterranea, 176 alkaloids, 65 Antarctic lakes, 515–6 acetate, 256 alkenes, 396 antheridium, Chlorophyta, 162, Achnanthes exigua, 393, 395; longipes, allantoin, 115 163–6; Rhodophyceae, 117–18, 378, 379; lanceolata, 395 allelochemical, 66, 513 125, 127, 155 acidic water, 155–7, 197, 258 allelopathic interactions, 66 Anthophysa, 342; vegetans, 337, 341 acritrachs, 277 alloparasite, 97 anthropogenic effects, 173, 189 Acrocarpia paniculata, 471 allophycocyanin, 17–18, 43, 90, 323 antibiotics, 68 Acrochaetiales, 107, 108, 115–16 alveolus, 310, 312 anticlinal division, 432, 446, 466 Acrochaetium, 96, 115; asparagopsis, ammonia, 26, 42–3, 47, 54, 72 anti-herbivore chemicals, 66 106; corymbiterum, 102 amnesic shellfish poisoning, 387–8, Antithamnion, 95; nipponicum, 106; acronematic flagellum, 7 509 plumula, 96; vesicular cell, 97
    [Show full text]
  • Contaminant-Free Cultivation of Pfiesteria Shumwayae (Dinophyceae) on a Fish Cell Line
    AQUATIC MICROBIAL ECOLOGY Vol. 39: 97–105, 2005 Published April 28 Aquat Microb Ecol Contaminant-free cultivation of Pfiesteria shumwayae (Dinophyceae) on a fish cell line Matthew W. Parrow1,*, JoAnn M. Burkholder1, Nora J. Deamer1, John S. Ramsdell2 1Center for Applied Aquatic Ecology, North Carolina State University, 620 Hutton Street, Suite 104, Raleigh, North Carolina 27606, USA 2Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, National Oceanic & Atmospheric Administration, National Ocean Service, 219 Fort Johnson Road, Charleston, South Carolina 29412-9110, USA ABSTRACT: Geographically distinct strains of the heterotrophic dinoflagellate Pfiesteria shumwayae were cultivated on a fish cell line in the apparent absence of bacteria and other microbial conta- minants. Cultures were established with a high rate of success by inoculating single purified P. shumwayae cells into fish cell cultures containing a simple saltwater medium suitable for both cell types, and resulting isolates were serially cultivated on fish cells for months without visible signs of abnormality or reduced viability. P. shumwayae fed phagocytically on the fish cells and exhibited higher cell production than reported using other culturing methods. Compared to previous methods of studying the interaction between Pfiesteria spp. and fishes, this system enabled closer and more direct observation of the dinoflagellates and was also more economical and sustainable as a culturing method. The absence of bacteria and other contaminating microorganisms should facilitate important physiological and biochemical investigations. The methods used were inadequate for cultivating strains of P. piscicida, suggesting a possible difference in nutritional requirements between the 2 Pfiesteria species. KEY WORDS: Pfiesteria spp. · Fish cell line · Dinoflagellate culture Resale or republication not permitted without written consent of the publisher INTRODUCTION tal systems inevitably includes associated bacterial, fungal and protistan contaminants.
    [Show full text]
  • Symposium on Harmful Marine Algae in the U.S
    Symposium on Harmful Marine Algae in the U.S. December 4-9, 2000 Symposium Agenda, Abstracts and Participants Marine Biological Laboratory Woods Hole, Massachusetts Symposium Director: Donald M. Anderson Symposium Coordinator: Judy Kleindinst Steering Committee: Don Anderson Woods Hole Oceanographic Institution Dan Baden University of North Carolina, Wilmington Sue Banahan NOAA, National Ocean Service, Silver Spring JoAnn Burkholder North Carolina State University Pat Glibert University of Maryland Center for Environmental Science John Heisler EPA, Oceans and Coastal Protection Division Dennis McGillicuddy Woods Hole Oceanographic Institution Chris Scholin Monterey Bay Aquarium Research Institute Kevin Sellner NOAA, Coastal Ocean Program, Silver Spring Rick StumpfNOAA, National Ocean Service, Silver Spring Pat Tester NOAA, National Ocean Service, Beaufort Fran VanDolah NOAA, National Ocean Service, Charleston Tracy Villareal The University of Texas at Austin Session Coordinators/Chairs: (Note: Names of Session Chairs are underlined) ECOHAB – Florida: Karen Steidinger, Pat Tester, Fran VanDolah Gulf of Mexico HABs Quay Dortch, Tracy Villareal Pfiesteria – NC, SC, FL JoAnn Burkholder, Jan Landsberg, Alan Lewitus, Wayne Litaker Pfiesteria – DE, MD, VA Pat Glibert, Dave Oldach, Jeff Shields West Coast HABs Rita Horner, Chris Scholin, Vera Trainer Non-regional HABs Kevin Sellner, Tracy Villareal ECOHAB – GOM Don Anderson, Dave Townsend Brown Tides Sue Banahan, Greg Boyer, Cornelia Schlenk Sponsors: U.S. National Office for Marine Biotoxins and Harmful Algae California Sea Grant College Maryland Sea Grant College Monterey Bay Aquarium Research Institute National Institute of Environmental Health Sciences NOAA / Coastal Ocean Program NOAA / Center for Coastal Monitoring and Assessment National Sea Grant Office New York Sea Grant College South Carolina Sea Grant Consortium Virginia Sea Grant College Symposium on Harmful Marine Algae in the U.S.
    [Show full text]
  • Plasticity and Multiplicity of Trophic Modes in the Dinoflagellate
    Journal of Marine Science and Engineering Review Plasticity and Multiplicity of Trophic Modes in the Dinoflagellate Karlodinium and Their Pertinence to Population Maintenance and Bloom Dynamics Huijiao Yang 1,2,3, Zhangxi Hu 1,2,3,* and Ying Zhong Tang 1,2,3,* 1 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] (H.Y.) 2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China * Correspondence: [email protected] (Z.H.); [email protected] (Y.Z.T.); Tel.: +86-532-8289-6098 Abstract: As the number of mixotrophic protists has been increasingly documented, “mixoplankton”, a third category separated from the traditional categorization of plankton into “phytoplankton” and “zooplankton”, has become a new paradigm and research hotspot in aquatic plankton ecology. While species of dinoflagellates are a dominant group among all recorded members of mixoplankton, the trophic modes of Karlodinium, a genus constituted of cosmopolitan toxic species, were reviewed due to their representative features as mixoplankton and harmful algal blooms (HABs)-causing dinoflagellates. Among at least 15 reported species in the genus, three have been intensively studied for their trophic modes, and all found to be phagotrophic. Their phagotrophy exhibits multiple characteristics: (1) omnivority, i.e., they can ingest a variety of preys in many forms; (2) flexibility in phagotrophic mechanisms, i.e., they can ingest small preys by direct engulfment and much bigger preys by myzocytosis using a peduncle; (3) cannibalism, i.e., species including at least K.
    [Show full text]