Supplementary Figures Figure S1. Isoprene Consumption In

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Figures Figure S1. Isoprene Consumption In Supplementary Figures 30.0 25.0 20.0 15.0 10.0 5.0 Isoprene concentration in the headspace (ppmv) 0.0 0 20406080100120140160 -5.0 Time (h) OPL washings OPL swabs Figure S1. Isoprene consumption in microcosms from oil palm leaf (OPL) washings and swabs. Leaf microcosms were enriched and replenished with 12C-isoprene several times. Data points show the mean of triplicates and error bars show the standard deviation. A 35.0 T1 T2 T3 30.0 25.0 20.0 15.0 10.0 5.0 Isoprene concentration in the headspace (ppm) headspace the in concentration Isoprene 0.0 -5.0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 Time (h) 12C-isoprene 13C-labelled isoprene B 70.0 T1 60.0 50.0 40.0 30.0 20.0 10.0 Isoprene concentration in the headspace (ppmv) 0.0 -10.0 0 20 40 60 80 100 120 140 160 180 200 220 Time (h) 12C-isoprene 13C-labelled isoprene Figure S2. Isoprene consumption in microcosms used in DNA-SIP experiments with oil palm soil (A) and leaf washings (B). Soil (A) and leaf washings (B) microcosms were enriched and replenished with 12C- or 13C-labelled isoprene. Data points show the mean of triplicates and error bars show the standard deviation. B) Leaf washings enrichment are shown up to 220 h (T1) because of variation observed in the isoprene consumption between replicates. A 12 12 C-isoprene T1 12 C-isoprene T3 L C-isoprene T2 40 35 45 L L 35 30 40 35 30 25 30 25 20 25 20 15 20 15 15 DNA concentration(ng uL-1) DNA concentrationDNA uL-1) (ng 10 DNA concentration (ng uL-1) DNA (ng concentration 10 10 5 5 5 0 0 0 1.397 1.399 1.401 1.403 1.405 1.407 1.398 1.399 1.4 1.401 1.402 1.403 1.404 1.405 1.406 1.407 1.398 1.4 1.402 1.404 1.406 Refractive Index Refractive Index Refractive Index 1 2 3 1 2 3 1 2 3 13 13 13 C-isoprene T3 C-isoprene T1 C-isoprene T2 L 45 L 45 30 L 40 40 25 35 35 30 30 20 25 25 15 20 20 15 15 10 uL-1) (ng concentration DNA DNA concentration uL-1) DNA (ng DNAconcentrationuL-1) (ng H 10 H 10 5 H 5 5 0 0 0 1.398 1.4 1.402 1.404 1.406 1.397 1.399 1.401 1.403 1.405 1.407 1.395 1.397 1.399 1.401 1.403 1.405 1.407 Refractive Index Refractive Index Refractive Index 1 2 3 1 2 3 1 2 3 B Figure S3. Separation 12C and 13C DNA of oil palm soil (A) and oil palm leaf washings (B) throughout the DNA-SIP experiments. DNA concentration and density of CsCl fractions obtained after ultracentrifugation of extracted DNA from enriched soil (A) and leaf washings (B) microcosms after enrichment with 12C-isoprene (top panel) and 13C-labelled isoprene (bottom panel) for each replicate (1, 2 and 3) throughout the DNA-SIP 13 12 experiments (T1, T2 and T3, refer to Table S1). The CsCl fractions chosen to represent C-labelled (heavy fraction) and unlabelled C-DNA (light fraction) are indicated: H arrow: heavy DNA; L arrow: light DNA. Figure S4. Relative abundance of bacterial orders during DNA-SIP enrichments Relative abundance of bacterial 16S rRNA genes (at the order phylogenetic level) obtained by PCR of enriched and un-enriched DNA extracted from oil-palm soil and leaf-washing samples. Results include an un-enriched (un-fractionated) sample and pooled heavy DNA fractions (Figure S3) for three time points T1, T2 for one replicate (shown as T1.1, T2.1) and T3 for all three replicates (shown as T3.1, T3.2 and T3.3; refer to Table S1 for the time course). Soil samples, enriched towards the left, and leaf washings, enriched towards the right. Only 16S rRNA gene sequences with a relative abundance of greater than 2% are shown. 16S rRNA gene sequences with a relative abundance of less than 2% are grouped together as “others”. Representatives from the order Actinomycetales and Sphingomonadales, highlighted with black border, were isolated from the DNA-SIP enrichments. 96 AJ344450.1 Gordonia polyisoprenivorans strain VH2 98 KY649295.1 Gordonia polyisoprenivorans strain i37 36 NR 026500.1 Gordonia polyisoprenivorans strain Kd2 NR 024639.1 Gordonia rhizosphera NBRC 16068 50 52 NR 074529.1 Gordonia bronchialis DSM 43247 36 NR 037030.1 Gordonia aichiensis strain E9028 100 NR 037031.1 Gordonia sputi strain 3884 55 NR 043330.1 Gordonia rubripertincta strain DSM 43248 RKME01 Gordonia strain OPL2 95 NR 118891.1 Gordonia terrae strain DSM 43249 NR 118597.1 Gordonia hydrophobica strain DSM 44015 NR 026297.1 Gordonia hirsuta DSM 44140 NBRC 16056 55 NR 118623.1 Gordonia amarae strain DSM 43392 0.0050 Figure S5. 16S rRNA gene phylogenetic tree of representative members of the Gordonia genus and the oil palm leaf isolate Gordonia strain OPL2. Maximum Likelihood tree includes thirteen 16S rRNA gene sequences, twelve representatives from the Gordonia genus and Gordonia strain OPL2. Following removal of gaps and missing data, there were 1,337 bp in the alignment. Bootstrap values (1000 replications) are shown. Confirmed isoprene- degrading isolates from the Gordonia genus are indicated with black diamonds, including Gordonia strain OPL2 isolated in this study. The scale bar shows nucleotide substitutions per site. 56 RKMD01 Sphingopyxis strain OPL5 42 CP019449.1 Sphingopyxis strain QXT-31 75 AB245353.1 Sphingopyxis panaciterrae Gsoil 124 NR 024631.1 Sphingopyxis chilensis strain S37 47 64 NR 137237.1 Sphingopyxis fribergensis strain Kp5.2 97 AY563034.1 Sphingopyxis granuli strain Kw07 71 NR 041366.1 Sphingopyxis ginsengisoli strain Gsoil250 17 NR 044973.1 Sphingopyxis alaskensis strain RB2256 HQ436492.1 Sphingopyxis rigui strain 01SU5-P 16 AY554010.1 Sphingopyxis flavimaris strain SW-151 52 65 100 DQ781321.2 Sphingopyxis litoris strain FR1093 NR 025248.1 Novosphingobium pentaromativorans US6-1 98 NR 043014.1 Sphingopyxis baekryungensis strain SW-150 NR 025838.1 Novosphingobium capsulatum strain GIFU 11526 99 NR 042934.1 Novosphingobium taihuense strain T3-B9 NR 026249.1 Sphingobium chlorophenolicum strain ATCC 33790 NR 044902.1 Sphingomonas haloaromaticamans strain A175 NR 152709.1 Sphingomonas naphthae strain DKC-5-1 95 100 EF467848.1 Sphingomonas polyaromaticivorans strain B2-7 80 NR 133865.1 Sphingomonas oligoaromativorans strain IMER-A1-28 68 AY453855.1 Sphingomonas phyllosphaerae NR 024700.1 Sphingomonas echinoides strain ATCC 14820 70 27 NR 024998.1 Sphingomonas koreensis strain JSS-26 0.020 Figure S6. 16S rRNA gene phylogenetic tree of representative members of the Sphingomonadaceae family and the oil palm leaf isolate Sphingopyxis sp. OPL5 Maximum likelihood tree includes twenty-two sequences, twenty-one type strain representatives from the Sphingomonadaceae family and Sphingopyxis strain OPL5. Following removal of gaps and missing data, there were 1,370 bp in the alignment. Bootstrap percentages (1000 replications) are shown at the nodes. The strain isolated in this study is indicated with a black diamond. The scale bar shows nucleotide substitutions per site. 10 3 2 1 1 0.1 log scale (Optical Density at 540 nm) at Density (Optical log scale 0.01 0 20 40 60 80 100 120 140 160 180 200 Time (h) Figure S7. Growth of Sphingopyxis sp. OPL5 in a 4 litre fermenter with isoprene. Sphingopyxis OPL5 cells were grown in minimal medium and supplied with isoprene vapour in air. Arrows indicate the three harvesting times. 12 10 ) -1 8 6 (nmol min mg 0 V 4 2 0 0 5 10 15 20 25 30 35 μ [S0] ( M) Figure S8. Rate of oxygen uptake (V0) as a function of isoprene concentration [S0] in solution for Sphingopyxis strain OPL5 cells, determined using a Clark-type oxygen electrode [12]. Table S1 Incorporation of 13C-labelled carbon during DNA-SIP experiments with oil palm soil and leaf washings 13C isoprene spiked into the Sample Time course Time (h) headspace (μmol g-1) * OPS SIP Native soil (T0) 0 0 OPS SIP Time point 1 (T1) 31.2 142 OPS SIP Time point 2 (T2) 53.1 166 OPS SIP Time point 3 (T3) 85.9 190 OPL SIP Native leaf washing (T0) 0 0 OPL SIP Time point 1 (T1) ~25 214-226^ OPL SIP Time point 2 (T2) ~50 274-285.5^ OPL SIP Time point 3 (T3) ~75 302-311.5^ *Consumption of isoprene in DNA-SIP microcosms was monitored by gas chromatography. Incorporation of carbon was estimated assuming that 50% isoprene consumed was assimilated. ^There was variation in the consumption times and spiking of fresh isoprene for the leaf-washing replicates. Table S2. Identity of Iso polypeptides encoded by iso gene clusters when compared to the corresponding Iso polypeptides from Rhodococcus sp. strain AD45 Isoprene-degrading isolates are in bold. wsMG designation indicates an iso gene-containing contig retrieved from willow soil metagenomes [2]. Percentage identities (% amino acid identity) are with respect to the Iso polypeptides of the most well-characterised isoprene-degrader Rhodococcus sp. AD45 [3], except for AldH1 from Gordonia i37 which was chosen because of its position in the cluster. 100 99-90 89-80 79-70 69-60 59-50 49-35 34-0 Isolate/contig Rhodococcus sp. AD45 IsoG IsoH IsoI IsoJ - IsoA IsoB IsoC IsoD IsoE IsoF Gordonia sp. i37 79 79 83 71 AldH1 86 57 78 74 71 60 Gordonia sp.
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera
    Microbiol. Cult. Coll. June 2003. p. 13 ─ 21 Vol. 19, No. 1 Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera Koei Hamana1)*,Azusa Sakamoto1),Satomi Tachiyanagi1), Eri Terauchi1)and Mariko Takeuchi2) 1)Department of Laboratory Sciences, School of Health Sciences, Faculty of Medicine, Gunma University, 39 ─ 15 Showa-machi 3 ─ chome, Maebashi, Gunma 371 ─ 8514, Japan 2)Institute for Fermentation, Osaka, 17 ─ 85, Juso-honmachi 2 ─ chome, Yodogawa-ku, Osaka, 532 ─ 8686, Japan Cellular polyamines of 41 newly validated or reclassified alpha proteobacteria belonging to 20 genera were analyzed by HPLC. Acetic acid bacteria belonging to the new genus Asaia and the genera Gluconobacter, Gluconacetobacter, Acetobacter and Acidomonas of the alpha ─ 1 sub- group ubiquitously contained spermidine as the major polyamine. Aerobic bacteriochlorophyll a ─ containing Acidisphaera, Craurococcus and Paracraurococcus(alpha ─ 1)and Roseibium (alpha-2)contained spermidine and lacked homospermidine. New Rhizobium species, including some species transferred from the genera Agrobacterium and Allorhizobium, and new Sinorhizobium and Mesorhizobium species of the alpha ─ 2 subgroup contained homospermidine as a major polyamine. Homospermidine was the major polyamine in the genera Oligotropha, Carbophilus, Zavarzinia, Blastobacter, Starkeya and Rhodoblastus of the alpha ─ 2 subgroup. Rhodobaca bogoriensis of the alpha ─ 3 subgroup contained spermidine. Within the alpha ─ 4 sub- group, the genus Sphingomonas has been divided into four clusters, and species of the emended Sphingomonas(cluster I)contained homospermidine whereas those of the three newly described genera Sphingobium, Novosphingobium and Sphingopyxis(corresponding to clusters II, III and IV of the former Sphingomonas)ubiquitously contained spermidine.
    [Show full text]
  • Sphingopyxis Italica, Sp. Nov., Isolated from Roman Catacombs 1 2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE IJSEM Papers in Press. Published December 21, 2012 as doi:10.1099/ijs.0.046573-0 provided by Digital.CSIC 1 Sphingopyxis italica, sp. nov., isolated from Roman catacombs 2 3 Cynthia Alias-Villegasª, Valme Jurado*ª, Leonila Laiz, Cesareo Saiz-Jimenez 4 5 Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 6 Apartado 1052, 41080 Sevilla, Spain 7 8 * Corresponding author: 9 Valme Jurado 10 Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC 11 Apartado 1052, 41080 Sevilla, Spain 12 Tel. +34 95 462 4711, Fax +34 95 462 4002 13 E-mail: [email protected] 14 15 ª These authors contributed equally to this work. 16 17 Keywords: Sphingopyxis italica, Roman catacombs, rRNA, sequence 18 19 The sequence of the 16S rRNA gene from strain SC13E-S71T can be accessed 20 at Genbank, accession number HE648058. 21 22 A Gram-negative, aerobic, motile, rod-shaped bacterium, strain SC13E- 23 S71T, was isolated from tuff, the volcanic rock where was excavated the 24 Roman Catacombs of Saint Callixtus in Rome, Italy. Analysis of 16S 25 rRNA gene sequences revealed that strain SC13E-S71T belongs to the 26 genus Sphingopyxis, and that it shows the greatest sequence similarity 27 with Sphingopyxis chilensis DSMZ 14889T (98.72%), Sphingopyxis 28 taejonensis DSMZ 15583T (98.65%), Sphingopyxis ginsengisoli LMG 29 23390T (98.16%), Sphingopyxis panaciterrae KCTC12580T (98.09%), 30 Sphingopyxis alaskensis DSM 13593T (98.09%), Sphingopyxis 31 witflariensis DSM 14551T (98.09%), Sphingopyxis bauzanensis DSM 32 22271T (98.02%), Sphingopyxis granuli KCTC12209T (97.73%), 33 Sphingopyxis macrogoltabida KACC 10927T (97.49%), Sphingopyxis 34 ummariensis DSM 24316T (97.37%) and Sphingopyxis panaciterrulae T 35 KCTC 22112 (97.09%).
    [Show full text]
  • A Primary Assessment of the Endophytic Bacterial Community in a Xerophilous Moss (Grimmia Montana) Using Molecular Method and Cultivated Isolates
    Brazilian Journal of Microbiology 45, 1, 163-173 (2014) Copyright © 2014, Sociedade Brasileira de Microbiologia ISSN 1678-4405 www.sbmicrobiologia.org.br Research Paper A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates Xiao Lei Liu, Su Lin Liu, Min Liu, Bi He Kong, Lei Liu, Yan Hong Li College of Life Science, Capital Normal University, Haidian District, Beijing, China. Submitted: December 27, 2012; Approved: April 1, 2013. Abstract Investigating the endophytic bacterial community in special moss species is fundamental to under- standing the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were esti- mated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteo- bacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G.
    [Show full text]
  • Sphingopyxis Soli Sp. Nov., Isolated from Landfill Soil
    International Journal of Systematic and Evolutionary Microbiology (2010), 60, 1682–1686 DOI 10.1099/ijs.0.013128-0 Sphingopyxis soli sp. nov., isolated from landfill soil Jung-Hye Choi,1 Min-Soo Kim,1,2 Mi-Ja Jung,1 Seong Woon Roh,1,2 Kee-Sun Shin2 and Jin-Woo Bae1 Correspondence 1Department of Life and Nanopharmaceutical Sciences and Department of Biology, Jin-Woo Bae Kyung Hee University, Seoul 130-701, Republic of Korea [email protected] 2University of Science and Technology, BRC, KRIBB, Daejeon 305-333, Republic of Korea A Gram-negative, aerobic, rod-shaped, motile, oxidase-positive, catalase-negative bacterium, designated strain BL03T, was isolated from landfill soil in Pohang, Republic of Korea. Colonies on Luria–Bertani agar plates were yellow. The strain grew in the presence of 0–3 % (w/v) NaCl, at 15–42 6C and at pH 5.0–9.5. The predominant ubiquinone was Q-10, and the major cellular fatty acids were C17 : 1v6c,C15 : 0 2-OH and C18 : 1v7c. Polar lipids detected were phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and an unknown glycolipid. Spermidine was identified as the major polyamine component. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BL03T belongs to the genus Sphingopyxis with high sequence similarity to Sphingopyxis taejonensis JSS54T (97.8 %), Sphingopyxis alaskensis RB2256T (97.4 %) and Sphingopyxis chilensis S37T (96.9 %). Levels of DNA–DNA relatedness between strain BL03T and the above three type strains were only 10.3–40.3 %. The DNA G+C content of strain BL03T was 65.9 mol%.
    [Show full text]
  • Sphingopyxis Sp. Strain OPL5, an Isoprene-Degrading Bacterium from the Sphingomonadaceae Family Isolated from Oil Palm Leaves
    microorganisms Article Sphingopyxis sp. Strain OPL5, an Isoprene-Degrading Bacterium from the Sphingomonadaceae Family Isolated from Oil Palm Leaves Nasmille L. Larke-Mejía 1 , Ornella Carrión 1 , Andrew T. Crombie 2, Terry J. McGenity 3 and J. Colin Murrell 1,* 1 School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK; [email protected] (N.L.L.-M.); [email protected] (O.C.) 2 School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK; [email protected] 3 School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-01603-592959 Received: 2 September 2020; Accepted: 7 October 2020; Published: 10 October 2020 Abstract: The volatile secondary metabolite, isoprene, is released by trees to the atmosphere in enormous quantities, where it has important effects on air quality and climate. Oil palm trees, one of the highest isoprene emitters, are increasingly dominating agroforestry over large areas of Asia, with associated uncertainties over their effects on climate. Microbes capable of using isoprene as a source of carbon for growth have been identified in soils and in the tree phyllosphere, and most are members of the Actinobacteria. Here, we used DNA stable isotope probing to identify the isoprene-degrading bacteria associated with oil palm leaves and inhabiting the surrounding soil. Among the most abundant isoprene degraders of the leaf-associated community were members of the Sphingomonadales, although no representatives of this order were previously known to degrade isoprene. Informed by these data, we obtained representatives of the most abundant isoprene degraders in enrichments, including Sphingopyxis strain OPL5 (Sphingomonadales), able to grow on isoprene as the sole source of carbon and energy.
    [Show full text]
  • Sphingopyxis Chilensis Sp. Nov., a Chlorophenol-Degrading Bacterium
    International Journal of Systematic and Evolutionary Microbiology (2003), 53, 473–477 DOI 10.1099/ijs.0.02375-0 Note Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. F. Godoy,1 M. Vancanneyt,2 M. Martı´nez,1 A. Steinbu¨chel,3 J. Swings2 and B. H. A. Rehm3 Correspondence 1Departamento de Microbiologı´a, Facultad de Ciencias Biolo´gicas, Universidad de Concepcio´n, B. H. A. Rehm Casilla 160-C Concepcio´n, Chile [email protected] 2BCCM/LMG Bacteria Collection, University of Ghent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium 3Institut fu¨r Mikrobiologie der Westfa¨lischen, Wilhelms–Universita¨t Mu¨nster, Corrensstrasse 3, D-48149 Mu¨nster, Germany The taxonomic position of a chlorophenol-degrading bacterium, strain S37T, was investigated. The 16S rDNA sequence indicated that this strain belongs to the genus Sphingopyxis, exhibiting high sequence similarity to the 16S rDNA sequences of Sphingomonas alaskensis LMG 18877T (98?8 %), Sphingopyxis macrogoltabida LMG 17324T (98?2 %), Sphingopyxis terrae IFO 15098T (95 %) and Sphingomonas adhaesiva GIFU 11458T (92 %). These strains (except Sphingopyxis terrae IFO 15098T, which was not investigated) and the novel isolate accumulated polyhydroxy- alkanoates consisting of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from glucose as carbon source. The G+C content of the DNA of strain S37T was 65?5 mol%. The major cellular fatty acids of this strain were octadecenoic acid (18 : 1o7c), heptadecenoic acid (17 : 1o6c) and hexadecanoic acid (16 : 0). The results of DNA–DNA hybridization experiments and its physiological characteristics clearly distinguished the novel isolate from all known Sphingopyxis species and indicated that the strain represents a novel Sphingopyxis species.
    [Show full text]
  • Estudio Del Crecimiento De Microcystis Aeruginosa Y De La Producción De Microcystina En Cultivo De Laboratorio
    UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS EXACTAS DEPARTAMENTO DE CIENCIAS BIOLÓGICAS Trabajo de Tesis Doctoral ESTUDIO DEL CRECIMIENTO DE MICROCYSTIS AERUGINOSA Y DE LA PRODUCCIÓN DE MICROCYSTINA EN CULTIVO DE LABORATORIO Melina Celeste Crettaz Minaglia (Leda Giannuzzi / Darío Andrinolo) 2018 1 Dedicada a mi mamá. 2 Contenidos Resumen ........................................................................................................................................................................ 5 Introducción ................................................................................................................................................................... 9 Generalidades de las cianobacterias y cianotoxinas .................................................................................................. 9 Microcystis aeruginosa y microcistinas .................................................................................................................. 14 Factores de crecimiento de cianobacterias, en especial M. aeruginosa, y de producción de microcistinas ............ 19 Temperatura ........................................................................................................................................................ 19 Nutrientes ............................................................................................................................................................ 21 Irradiación ..........................................................................................................................................................
    [Show full text]
  • Genomic Analysis of the Nitrate-Respiring Sphingopyxis Granuli (Formerly Sphingomonas Macrogoltabida) Strain TFA Inmaculada García-Romero, Antonio J
    García-Romero et al. BMC Genomics (2016) 17:93 DOI 10.1186/s12864-016-2411-1 RESEARCH ARTICLE Open Access Genomic analysis of the nitrate-respiring Sphingopyxis granuli (formerly Sphingomonas macrogoltabida) strain TFA Inmaculada García-Romero, Antonio J. Pérez-Pulido, Yolanda Elisabet González-Flores, Francisca Reyes-Ramírez, Eduardo Santero and Belén Floriano* Abstract Background: Sphingomonads are Alphaproteobacteria that belong to the Sphingomonas, Novosphingobium, Sphingopyxis or Sphingobium genera, They are physiologically diverse and broadly distributed in nature, playing important roles in oligotrophic environments and in the degradation of recalcitrant polyaromatic compounds, Sphingopyxis is a poorly studied genus of which only one representative (S. alaskensis RB2256) has been deeply characterized. In this paper we analyze the genomic features of S. granuli strain TFA (formerly Sphingomonas macrogoltabida) in comparison with the available Sphingopyxis sequenced genomes, to describe common characteristics of this genus and to highlight unique characteristics of strain TFA. Results: The TFA genome has been assembled in a single circular chromosome of 4.7 Mb. Genomic sequence analysis and proteome comparison re-assigned the TFA strain to the Sphingopyxis genus and the S. granuli species. Some regions of the TFA genome show high similarity (ca. 100 %) to other bacteria and several genomic islands have been detected. Pathways for aromatic compound degradation have been predicted but no growth of TFA has been detected using these as carbon or nitrogen sources. Genes for nitrate respiration have been identified as TFA exclusive. Experimental data on anaerobic growth of TFA using nitrate as a terminal electron acceptor are also provided. Conclusions: Sphingopyxis representatives form a compact phylogenetic group (with the exception of S.
    [Show full text]
  • Microbial Community Structure Analysis in Acer Palmatum Bark and Isolation of Novel Bacteria IAD-21 of the Phylum Abditibacteriota (Former Candidate Division FBP)
    Microbial community structure analysis in Acer palmatum bark and isolation of novel bacteria IAD-21 of the phylum Abditibacteriota (former candidate division FBP) Kazuki Kobayashi1 and Hideki Aoyagi1,2 1 Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan ABSTRACT Background: The potential of unidentified microorganisms for academic and other applications is limitless. Plants have diverse microbial communities associated with their biomes. However, few studies have focused on the microbial community structure relevant to tree bark. Methods: In this report, the microbial community structure of bark from the broad-leaved tree Acer palmatum was analyzed. Both a culture-independent approach using polymerase chain reaction (PCR) amplification and next generation sequencing, and bacterial isolation and sequence-based identification methods were used to explore the bark sample as a source of previously uncultured microorganisms. Molecular phylogenetic analyses based on PCR-amplified 16S rDNA sequences were performed. Results: At the phylum level, Proteobacteria and Bacteroidetes were relatively abundant in the A. palmatum bark. In addition, microorganisms from the phyla Acidobacteria, Gemmatimonadetes, Verrucomicrobia, Armatimonadetes, and Submitted 2 February 2019 Abditibacteriota, which contain many uncultured microbial species, existed in the Accepted 12 September 2019 A. palmatum bark. Of the 30 genera present at relatively high abundance in the bark, Published 29 October 2019 some genera belonging to the phyla mentioned were detected. A total of 70 isolates Corresponding author could be isolated and cultured using the low-nutrient agar media DR2A and Hideki Aoyagi, PE03.
    [Show full text]
  • Sphingopyxis Baekryungensis Sp. Nov., an Orange-Pigmented Bacterium Isolated from Sea Water of the Yellow Sea in Korea
    International Journal of Systematic and Evolutionary Microbiology (2005), 55, 1223–1227 DOI 10.1099/ijs.0.63495-0 Sphingopyxis baekryungensis sp. nov., an orange-pigmented bacterium isolated from sea water of the Yellow Sea in Korea Jung-Hoon Yoon,1 Choong-Hwan Lee,1 Soo-Hwan Yeo2 and Tae-Kwang Oh1 Correspondence 1Laboratory of Microbial Function, Korea Research Institute of Bioscience and Biotechnology Jung-Hoon Yoon (KRIBB), PO Box 115, Yusong, Taejon, Korea [email protected] 2Center for Traditional Microorganism Resources, Keimyung University, Shindang-dong, Dalseo-gu, Daegu, Korea A Gram-negative, motile, slightly halophilic bacterial strain, SW-150T, was isolated from sea water of the Yellow Sea, Korea, and was characterized by a polyphasic taxonomic approach. Strain SW-150T grew optimally at 25–30 6C and in the presence of 2 % (w/v) NaCl. The isolate could be distinguished from other Sphingopyxis species in producing an orange pigment. It contained ubiquinone-10 as the predominant respiratory lipoquinone and C18 : 1v7c and C17 : 1v6c as the major fatty acids. No 3-hydroxy fatty acids were detected. Major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 63 mol%. Comparative 16S rRNA gene sequence analyses showed that strain SW-150T was phylogenetically affiliated to the genus Sphingopyxis of the family Sphingomonadaceae. Similarity values between the 16S rRNA gene sequences of strain SW-150T and the type strains of Sphingopyxis species ranged from 91?6to94?2%, making it possible to categorize strain SW-150T as a species that is separate from previously described Sphingopyxis species. On the basis of phenotypic properties and phylogenetic distinctiveness, SW-150T (=KCTC 12231T=DSM 16222T) should be classified as the type strain of a novel Sphingopyxis species, for which the name Sphingopyxis baekryungensis sp.
    [Show full text]
  • Genome-Wide Analysis Reveals Genetic Potential for Aromatic Compounds Biodegradation of Sphingopyxis
    Hindawi BioMed Research International Volume 2020, Article ID 5849123, 12 pages https://doi.org/10.1155/2020/5849123 Research Article Genome-Wide Analysis Reveals Genetic Potential for Aromatic Compounds Biodegradation of Sphingopyxis Fei Yang,1 Hai Feng,1 Isaac Yaw Massey,1 Feiyu Huang,1 Jian Guo,1 and Xian Zhang 1,2 1Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China 2Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, China Correspondence should be addressed to Xian Zhang; [email protected] Received 21 August 2019; Accepted 20 April 2020; Published 27 May 2020 Academic Editor: Kazuhisa Nishizawa Copyright © 2020 Fei Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Members of genus Sphingopyxis are frequently found in diverse eco-environments worldwide and have been traditionally considered to play vital roles in the degradation of aromatic compounds. Over recent decades, many aromatic-degrading Sphingopyxis strains have been isolated and recorded, but little is known about their genetic nature related to aromatic compounds biodegradation. In this study, bacterial genomes of 19 Sphingopyxis strains were used for comparative analyses. Phylogeny showed an ambiguous relatedness between bacterial strains and their habitat specificity, while clustering based on Cluster of Orthologous Groups suggested the potential link of functional profile with substrate-specific traits. Pan-genome analysis revealed that 19 individuals were predicted to share 1,066 orthologous genes, indicating a high genetic homogeneity among Sphingopyxis strains.
    [Show full text]