Bacterial Diversity and Antibiotic Resistance from the Water Source to the Tap

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Diversity and Antibiotic Resistance from the Water Source to the Tap Bacterial diversity and antibiotic resistance from the water source to the tap Thesis submitted to the Universidade Católica Portuguesa to attain the degree of PhD in Biotechnology with specialization in Microbiology By Ivone Cristina Vaz Moreira April 2012 Bacterial diversity and antibiotic resistance from the water source to the tap Thesis submitted to the Universidade Católica Portuguesa to attain the degree of PhD in Biotechnology - with specialization in Microbiology By Ivone Cristina Vaz Moreira Under the supervision of Professor Célia Maria Manaia Rodrigues Under the co-supervision of Professor Olga Cristina Pastor Nunes April 2012 ‘‘Everything comes from water! And everything is kept alive by water!’’ J.W. von Goethe, Faust II, 1833 to all the persons who crossed my life and taught me something Abstract ABSTRACT Water is one of the most important habitats for bacteria in the environment. The continuous flux in the urban water cycle carries water through many places, dragging bacteria and numerous chemical contaminants. This makes of water one of the most important vehicles, not only for the dissemination of the chemical substances, but also for the dissemination of organisms and, consequently, the respective resistance genes in the environment. The main goal of this study was to investigate if drinking water production and distribution could represent a hotspot for the proliferation, selection or incoming of antibiotic resistant bacteria, and the likelihood of these organisms to reach the final consumer, via tap water. In order to meet this objective, the study was planned aiming the tracking of bacterial communities and individual isolates from the source to the tap. Firstly, the abundance and diversity of bacteria in raw, treated and final (tap) water was characterized using culture-dependent and culture-independent (16S rRNA-DGGE) approaches. Both approaches showed that the water treatment reduced the bacterial counts, diversity and cultivability, promoting also a shift in the cultivable bacterial community from predominantly Gram-negative to predominately Gram-positive bacteria. Nevertheless, this effect was reverted, and in tap water Gram-negative bacteria became predominant. Moreover, in tap water total and cultivable bacteria counts were higher than in the disinfected water collected from the distribution system. These results suggest the occurrence of bacterial regrowth and/or biofilm formation over the distribution system or at tap level. Although changes in the bacterial community structure over the water circuit were observed, the predominant phylum detected, by 16S rRNA-DGGE, was the same in all the sampling points – Proteobacteria (mainly of classes Alpha, Beta and Gamma). i Abstract Culture-dependent and culture-independent approaches were compared to assess which groups might be overlooked by cultivation procedures. In order to have a clear evidence of the bacterial groups which could be overlapped using those procedures, culture-dependent and two culture-independent (16S rRNA gene based DGGE and 454 pyrosequencing) methods were compared for their ability to survey the bacterial diversity of a sample. Such a comparison showed that although the different methods detected the same predominant phyla, different bacteria were targeted. Thus, besides the previous expectation that culture-independent methods would detect more bacterial groups than cultivation methods, it was also concluded that both approaches target different bacterial populations. Based on the study of the bacterial diversity, mainly of cultivable bacteria, and in the literature available, two of the most relevant taxonomic groups detected in drinking waters, due to the widespread distribution and/or abundance, were further studied. Thus, Sphingomonadaceae and Pseudomonas spp. isolated from the source to the tap were studied for species diversity, intra-species variability and potential to spread antibiotic resistance. Although members of the same species were detected in different sampled sites, the same genotype was never detected in raw water and in tap water. According to these results, the hypothesis that bacteria detected in tap water had origin in the water source had to be rejected. Other hypotheses, namely the occurrence of regrowth in water pipelines or taps or an external contamination downstream the sampled sites in the distribution system, emerged from this study. Additionally, the analysis of the antibiotic resistance profiles confirmed that both Sphingomonadaceae and Pseudomonas spp. are potential reservoirs of antibiotic resistance. Nevertheless, clear evidences of horizontal gene transfer were not obtained in this study. Indeed, antibiotic resistance patterns were mainly species-, rather than site- or strain-related, suggesting the importance of vertical ii Abstract resistance transmission in water bacteria. Some antibiotic resistance phenotypes were observed in tap water but not upstream. Examples of this situation were the resistance phenotypes to ampicillin-sulbactam, piperacillin plus tazobactam-pyocyanin, imipenem, ceftazidime, cefepime, gentamicin or tobramycin in Sphingomonadaceae, or to streptomycin and rifampicin in Pseudomonas spp. Cultivation-independent methods show invariably that most of the bacteria in a community are unknown, which means that were never cultivated, characterized and integrated in a validly named taxonomic group. Bacterial taxonomy can have a contribution to gradually narrow the tranche corresponding to the unknown bacteria. In this study a new species name Bacillus purgationiresistens sp. nov. was proposed, based in a single isolate recovered from treated water. Drinking water was confirmed as a potential hotspot for the spreading of antibiotic resistant bacteria, with emphasis on the transfer environment-humans. iii iv Resumo RESUMO Título da Tese: “Diversidade bacteriana e resistência a antibióticos desde a captação da água até à torneira” A água é um dos habitats mais importantes para as bactérias no ambiente. O fluxo contínuo da água, nomeadamente ao longo do seu ciclo urbano, faz com que chegue a muitos locais, arrastando microrganismos e inúmeros contaminantes químicos. Isto faz da água um dos veículos mais importantes para a disseminação no ambiente, não só de substâncias químicas, mas também de bactérias e, consequentemente, dos respetivos genes de resistência. O principal objetivo deste estudo foi investigar se a produção e distribuição de água de consumo poderá representar um ponto-chave para a proliferação, seleção e entrada de bactérias resistentes a antibióticos, bem como a probabilidade de estes organismos chegarem até ao consumidor final, através da água da torneira. O estudo foi planeado para atingir esse objectivo, através do rastreio de comunidades bacterianas e de isolados individuais desde a captação até à torneira. Inicialmente, a abundância e diversidade bacteriana em água não-tratada, tratada e final (torneira) foi caracterizada através do uso de abordagens dependentes e independentes (16S rRNA-DGGE) de cultivo. Ambas as abordagens mostraram que o tratamento da água reduziu as contagens, a cultivabilidade e a diversidade bacteriana, promovendo também a alteração da comunidade bacteriana cultivável de predominantemente bactérias Gram-negativas para predominantemente Gram-positivas. No entanto, este efeito foi revertido, e na água de torneira as bactérias Gram-negativas voltaram a ser predominantes. Adicionalmente, na água de torneira as contagens de microrganismos totais e de bactérias cultiváveis foram mais elevadas do que para a água v Resumo tratada recolhida no sistema de distribuição. Estes resultados sugerem a ocorrência de reactivação e crescimento bacteriano e/ou a formação de biofilme ao longo do sistema de distribuição e ao nível das torneiras. Apesar de se terem observado alterações na estrutura da comunidade bacteriana ao longo do circuito da água, o filo detetado como predominante, por 16S rRNA-DGGE, foi o mesmo em todos os pontos de amostragem – Proteobacteria (principalmente das classes Alpha, Beta e Gamma). Abordagens dependentes e independentes de cultivo foram comparadas para avaliar quais os grupos que poderão ser ignorados quando se caracterizam comunidades bacterianas usando métodos de cultivo. De forma a ter uma evidência mais clara dos grupos bacterianos que se sobrepõem usando as duas abordagens, o método dependente e dois independentes de cultivo (DGGE e pirosequenciação 454 com base no gene 16S rRNA) foram comparados quanto à sua capacidade para detectar a diversidade bacteriana de uma amostra de água. Esta comparação mostrou que apesar de os diferentes métodos identificarem o mesmo filo como sendo predominante, as bactérias detetadas eram diferentes. Assim, além da expectativa anterior de que os métodos independentes de cultivo detetassem mais grupos bacterianos do que os dependentes de cultivo, concluiu-se também que as duas abordagens incidem sobre diferentes populações bacterianas. Com base no estudo da diversidade bacteriana, principalmente das bactérias cultiváveis, e no que se encontra disponível na literatura, dois grupos taxonómicos de grande relevância em água de consumo, devido à sua ampla distribuição e/ou abundância, foram estudados. Assim, Sphingomonadaceae e Pseudomonas spp., isoladas desde a captação até à torneira foram caracterizadas para a diversidade de espécies, a variabilidade intra-espécie e o potencial para propagar resistências a antibióticos. Apesar de membros da mesma espécie terem sido identificados em diferentes
Recommended publications
  • Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas Sp
    microorganisms Article Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5 Karel Kopejtka 1 , Yonghui Zeng 1,2, David Kaftan 1,3 , Vadim Selyanin 1, Zdenko Gardian 3,4 , Jürgen Tomasch 5,† , Ruben Sommaruga 6 and Michal Koblížek 1,* 1 Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Tˇreboˇn,Czech Republic; [email protected] (K.K.); [email protected] (Y.Z.); [email protected] (D.K.); [email protected] (V.S.) 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark 3 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 4 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Ceskˇ é Budˇejovice,Czech Republic 5 Research Group Microbial Communication, Technical University of Braunschweig, 38106 Braunschweig, Germany; [email protected] 6 Laboratory of Aquatic Photobiology and Plankton Ecology, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected] † Present Address: Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, 38106 Braunschweig, Germany. Abstract: An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 Citation: Kopejtka, K.; Zeng, Y.; (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Ty- Kaftan, D.; Selyanin, V.; Gardian, Z.; rolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic Tomasch, J.; Sommaruga, R.; Koblížek, analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas M. Characterization of the Aerobic and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Anoxygenic Phototrophic Bacterium Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%).
    [Show full text]
  • Succession and Persistence of Microbial Communities and Antimicrobial Resistance Genes Associated with International Space Stati
    Singh et al. Microbiome (2018) 6:204 https://doi.org/10.1186/s40168-018-0585-2 RESEARCH Open Access Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces Nitin Kumar Singh1, Jason M. Wood1, Fathi Karouia2,3 and Kasthuri Venkateswaran1* Abstract Background: The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. Results: The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii,andAspergillus lentulus.EventhoughRhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3.
    [Show full text]
  • Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera
    Microbiol. Cult. Coll. June 2003. p. 13 ─ 21 Vol. 19, No. 1 Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera Koei Hamana1)*,Azusa Sakamoto1),Satomi Tachiyanagi1), Eri Terauchi1)and Mariko Takeuchi2) 1)Department of Laboratory Sciences, School of Health Sciences, Faculty of Medicine, Gunma University, 39 ─ 15 Showa-machi 3 ─ chome, Maebashi, Gunma 371 ─ 8514, Japan 2)Institute for Fermentation, Osaka, 17 ─ 85, Juso-honmachi 2 ─ chome, Yodogawa-ku, Osaka, 532 ─ 8686, Japan Cellular polyamines of 41 newly validated or reclassified alpha proteobacteria belonging to 20 genera were analyzed by HPLC. Acetic acid bacteria belonging to the new genus Asaia and the genera Gluconobacter, Gluconacetobacter, Acetobacter and Acidomonas of the alpha ─ 1 sub- group ubiquitously contained spermidine as the major polyamine. Aerobic bacteriochlorophyll a ─ containing Acidisphaera, Craurococcus and Paracraurococcus(alpha ─ 1)and Roseibium (alpha-2)contained spermidine and lacked homospermidine. New Rhizobium species, including some species transferred from the genera Agrobacterium and Allorhizobium, and new Sinorhizobium and Mesorhizobium species of the alpha ─ 2 subgroup contained homospermidine as a major polyamine. Homospermidine was the major polyamine in the genera Oligotropha, Carbophilus, Zavarzinia, Blastobacter, Starkeya and Rhodoblastus of the alpha ─ 2 subgroup. Rhodobaca bogoriensis of the alpha ─ 3 subgroup contained spermidine. Within the alpha ─ 4 sub- group, the genus Sphingomonas has been divided into four clusters, and species of the emended Sphingomonas(cluster I)contained homospermidine whereas those of the three newly described genera Sphingobium, Novosphingobium and Sphingopyxis(corresponding to clusters II, III and IV of the former Sphingomonas)ubiquitously contained spermidine.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • A Primary Assessment of the Endophytic Bacterial Community in a Xerophilous Moss (Grimmia Montana) Using Molecular Method and Cultivated Isolates
    Brazilian Journal of Microbiology 45, 1, 163-173 (2014) Copyright © 2014, Sociedade Brasileira de Microbiologia ISSN 1678-4405 www.sbmicrobiologia.org.br Research Paper A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates Xiao Lei Liu, Su Lin Liu, Min Liu, Bi He Kong, Lei Liu, Yan Hong Li College of Life Science, Capital Normal University, Haidian District, Beijing, China. Submitted: December 27, 2012; Approved: April 1, 2013. Abstract Investigating the endophytic bacterial community in special moss species is fundamental to under- standing the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were esti- mated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteo- bacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G.
    [Show full text]
  • Molecular and Kinetic Characterization of Anammox Bacteria Enrichments and Determination of the Suitability of Anammox for Landfill Leachate Treatment
    AN ABSTRACT OF THE THESIS OF Sharmin Sultana for the degree of Master of Science in Environmental Engineering presented on December 1, 2016 Title: Molecular and Kinetic Characterization of Anammox Bacteria Enrichments and Determination of the Suitability of Anammox for Landfill Leachate Treatment Abstract approved: ______________________________________________________ Tyler S. Radniecki Anaerobic ammonium oxidation (anammox) has recently appeared as a promising approach for removing nitrogen from landfill leachates because it requires less oxygen and no organic carbon compared to traditional nitrification-denitrification system, and it produces low sludge volumes, thereby reducing operating and biological sludge disposal costs by over 60%. Anammox bacteria anaerobically oxidize ammonia with nitrite to form dinitrogen gas, which is bubbled out of the system. When combined with partial nitrification (the aerobic oxidation of half the ammonia to nitrite), anammox bacteria can be an efficient and sustainable solution to treat landfill leachate. However, leachate loading rates to the anammox reactor are critical due to the high concentrations of potential anammox inhibitors, including heterogenous organic carbon, heavy metals, pesticides and nitrite. In this study, anammox bacteria were enriched from two sources; sludge from the world’s first full-scale anammox plant (Dokhaven wastewater treatment plant) in Rotterdam, Netherlands and sludge from the Virginia Hampton Roads Sanitation District (HRSD) wastewater treatment facility, the first full-scale anammox plant in the United States. The sludge was enriched over 14 months in two sequencing batch reactors (SBR) and about a year period in a novel carbon nanotube membrane upflow anaerobic sludge blanket (MUASB) reactor. Of the two systems, SBR and MUASB, the MUASB was much more effective at enriching anammox bacteria due to its ability to capture planktonic anammox cells and enhance the anammox granulation process.
    [Show full text]
  • ETH Zurich Research Collection
    Research Collection Doctoral Thesis Identification of Indigenous Phyllosphere Isolates of the Genus Sphingomonas as Plant-Protective Bacteria Author(s): Innerebner, Gerd Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-6620246 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 19649 Identification of Indigenous Phyllosphere Isolates of the Genus Sphingomonas as Plant-Protective Bacteria A dissertation submitted to ETH Zurich for the degree of Doctor of Sciences Presented by Gerd Innerebner Mag. rer. nat., Leopold-Franzens-Universität Innsbruck Born on 3 January 1980 Citizen of Italy April 2011 Referees: Prof. Dr. Julia A. Vorholt Prof. Dr. Hans-Martin Fischer Prof. Dr. Leo Eberl Table of Contents Thesis Abstract ........................................................................................................................ 5 Zusammenfassung ................................................................................................................... 7 Chapter 1 General Introduction ............................................................................................................. 11 The phyllosphere as habitat for microorganisms ......................................................................... 11 Leaf-associated bacterial communities ........................................................................................
    [Show full text]
  • Tumour Associated Microbiota: Comparison of Methods for the Identification of Low Abundance Microbiome Samples Using RNA Sequencing Data
    UNIVERSIDAD AUTONÓMA DE MADRID ESCUELA POLITÉCNICA SUPERIOR TRABAJO FIN DE MÁSTER Tumour associated microbiota: comparison of methods for the identification of low abundance microbiome samples using RNA sequencing data Máster Universitario en BioinformátiCa y Biología Computacional Autor: Francisco José Jurado Rueda Tutora: Lola Alonso Guirado Supervisora: Núria Malats Riera Ponente: Miguel Redondo Nieto Grupo Epidemiología Genética y Molecular. Centro Nacional de Investigaciones Oncológicas. Febrero 2020 Acknowledgements To my mother, for her tireless support and constant supply of tuppers. To my bike, for the time saved. To my entire group, for keeping up a great environment in the lab. To my directors Núria and Lola. May I leave here a piece of Lola’s uniqueness: Francisella gaditana Bacteria del alma mía No vas a estar en vejiga Porque a ti te dé la gana Yo no me creo tu género Y mucho menos tu especie ¿Cómo vas a estar ahí dentro escondida entre los genes? Francisella gaditana Yo te relego al olvido O me aportas una prueba O eres falso positivo 1 3 INDEX Abstract .............................................................................................................. 5 1. Introduction ................................................................................................ 6 2. Objectives ................................................................................................... 7 4. Hypotheses ................................................................................................. 7 5. Materials and
    [Show full text]
  • Identification of Novel Betaproteobacteria in a Succinate-Assimilating Population in Denitrifying Rice Paddy Soil by Using Stable Isotope Probing
    Microbes Environ. Vol. 23, No. 3, 192–200, 2008 http://wwwsoc.nii.ac.jp/jsme2/ doi:10.1264/jsme2.23.192 Identification of Novel Betaproteobacteria in a Succinate-Assimilating Population in Denitrifying Rice Paddy Soil by Using Stable Isotope Probing TAKAYUKI SAITO1,†, SATOSHI ISHII1,†,*, SHIGETO OTSUKA1, MASAYA NISHIYAMA2, and KEISHI SENOO1 1Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan; and 2Faculty of Environmental Studies, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852–8521, Japan (Received April 8, 2008—Accepted May 24, 2008) Rice paddy soil has been shown to have strong denitrifying activity. However, the microbial populations responsible for the denitrification have not been well characterized. In this study, we employed Stable Isotope Probing (SIP) to study succinate-assimilating denitrifiers in soil microcosms amended with nitrate and 13C-succinate. Microbial popula- tions represented in 12C- and 13C-DNA fractions were different based on denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified 16S rRNA gene fragment. A nearly full-length 16S rRNA gene was also amplified, cloned, and sequenced from 13C-DNA fraction. Both PCR-DGGE and clone library analyses revealed that Burkholderi- ales and Rhodocyclales dominated the succinate-assimilating population in denitrifying soil after 24 h incubation. Among these, novel Betaproteobacteria, possibly within the order Rhodocyclales, represented 43% of the clones obtained. Nitrite reductase genes, nirS and nirK, were also amplified and cloned from the 13C-DNA fraction. While most nirK clones in this study were similar to the nirK sequences from Rhizobiales, a majority of the nirS clones were similar to the nirS sequences from Burkholderiales and Rhodocyclales, consistent with the 16S rRNA gene analysis.
    [Show full text]
  • Characterisation of the Response of Sphingopyxis Granuli Strain TFA to Anaerobiosis
    Abstract TESIS DOCTORAL Characterisation of the response of Sphingopyxis granuli strain TFA to anaerobiosis YOLANDA ELISABET GONZÁLEZ FLORES 17 TESIS DOCTORAL Characterisation of the response of Sphingopyxis granuli strain TFA to anaerobiosis Memoria presentada por Yolanda Elisabet González Flores para optar al grado de Doctora en Biotecnología, Ingeniería y Tecnología Química Sevilla, noviembre de 2019 El director de la tesis La directora de la tesis Dr. Eduardo Santero Santurino Dr. Francisca Reyes Ramírez Catedrático Profesora contratado doctor Dpto. Biología Molecular e Ingeniería Bioquímica Dpto. Biología Molecular e Ingeniería Bioquímica Universidad Pablo de Olavide Universidad Pablo de Olavide Departamento de Biología Molecular e Ingeniería Bioquímica Programa de Doctorado en Biotecnología, Ingeniería y Tecnología Química (RD: 99/2011) FUNDING AND GRANTS First, I want to thank the institutions that have made possible this PhD project held in Centro Andaluz del Biología del Desarrollo (CABD-CSIC-UPO), in the Departamento de Biología Molecular e Ingeniería Bioquímica at Pablo de Olavide University. This PhD project has been funded by the "Ayuda para Investigación Tutorizada" grant (Reference PPI1402) awarded by Pablo de Olavide University and the FPU grant (Reference FPU16/04203) awarded by the Spanish Government (Ministerio de Educación, Cultura y Deporte). During my PhD, I worked for three months in the Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University (The Netherlands), funded by the EMBO short-term fellowship awarded by EMBO organisation. Finally, this PhD project was also funded by a project awarded by the Spanish Government (Ministerio de Economía y Competitividad) in 2014 (Reference BIO2014-57545-R, "Modelos de regulación global y específica en bacterias degradadoras de contaminantes ambientales"), whose PI was Dr.
    [Show full text]
  • Effect of Non-Pathogenic Bacteria on Plant Pathogen Virulence and The
    Effect of non-pathogenic bacteria on plant pathogen virulence and the plant immune system Thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Microbiology at The University of Canterbury by Renji Jiang August 2020 Abstract The development of so-called biocontrol agents is in the spotlight to solve agricultural losses caused by foliar pathogens. Biocontrol agents can protect plants via direct antagonistic interactions or by modulating host immune networks to induce plant resistance indirectly. The focus of this thesis lies on screening potential microbial biocontrol agents against model pathogens and dissecting the underlying mechanisms behind such protection. I have employed an in planta assay to inoculate gnotobiotic Arabidopsis with individual strains from a diverse set of bacteria prior to infection with either the model biotrophic pathogen Pseudomonas syringae DC3000 or the model necrotrophic pathogen Botrytis cinerea. The protective ability of each bacterial strain was determined by examining the plant phenotype. The direct antagonistic interactions were suggested on a bacterial population level. In addition, a protoplast-based assay was established to investigate the potential link between the reduction in disease phenotype and the potential modulation of the plant immune responses to bacteria. As a result, Acidovorax sp. leaf 84, Pedobacter sp. leaf 194, Plantibacter sp. leaf 1 and Pseudomonas citronellolis P3B5 in addition to Sphingomonas species showed a striking ability to protect plants from developing severe disease symptoms caused by biotrophic pathogen Pseudomonas syringae DC3000 infection. Arthrobacter sp. leaf 145, Pseudomonas syringae DC3000, Pseudomonas syringae B728a, Pantoea vagans PW, Pantoea vagans C9-1, Pantoea agglomerans 299R, Rhodococcus sp.
    [Show full text]
  • Chromatic Bacteria – a Broad Host-Range Plasmid and Chromosomal Insertion Toolbox for Fluorescent Protein Expression in Bacteria
    bioRxiv preprint doi: https://doi.org/10.1101/402172; this version posted September 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Chromatic bacteria – A broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in bacteria Rudolf O. Schlechter1,2, Hyunwoo Jun1#, Michał Bernach1,2#, Simisola Oso1, Erica Boyd1, Dian A. Muñoz-Lintz1, Renwick C. J. Dobson1,2,3, Daniela M. Remus1,2,4, and Mitja N. P. Remus-Emsermann1,2* 1School of Biological Sciences, University of Canterbury, Christchurch, New Zealand. 2Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand. 3Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia. 4Protein Science & Engineering, Callaghan Innovation, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand. # Both authors contributed equally to this work * Correspondence: Mitja N. P. Remus-Emsermann [email protected] Keywords: fluorophore, fluorescent labelling, tagging, Tn5, Tn7, transposon bioRxiv preprint doi: https://doi.org/10.1101/402172; this version posted September 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Differential fluorescent labelling of bacteria has become instrumental for many aspects of microbiological research, such as the study of biofilm formation, bacterial individuality, evolution, and bacterial behaviour in complex environments.
    [Show full text]