Interstitial 14Q24.3 to Q31.3 Deletion in a 6-Year-Old Boy with a Non-Specific Dysmorphic Phenotype
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recombinant Human FLRT2 Protein Catalog Number: ATGP3291
Recombinant human FLRT2 protein Catalog Number: ATGP3291 PRODUCT INPORMATION Expression system Baculovirus Domain 36-541aa UniProt No. O43155 NCBI Accession No. NP_037363 Alternative Names FLRT2 PRODUCT SPECIFICATION Molecular Weight 57.5 kDa (514aa) Concentration 0.25mg/ml (determined by absorbance at 280nm) Formulation Liquid in. Phosphate-Buffered Saline (pH 7.4) containing 10% glycerol Purity > 90% by SDS-PAGE Endotoxin level < 1 EU per 1ug of protein (determined by LAL method) Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description FLRT2, also known as leucine-rich repeat transmembrane protein FLRT2, is one of three FLRT (fibronectin, leucine rich repeat, transmembrane) glycoproteins expressed in distinct areas of the developing brain and other tissues. Human FLRT1 and FLRT3 ECDs (extracellular domain) share approximately 47% aa identity with FLRT2. The fibronectin domain of all three FLRTs can bind to FGF receptors. Recombinant human FLRT2, fused to His-tag 1 Recombinant human FLRT2 protein Catalog Number: ATGP3291 at C-terminus, was expressed in insect cell and purified by using conventional chromatography techniques. Amino acid Sequence CPSVCRCDRN FVYCNERSLT SVPLGIPEGV TVLYLHNNQI NNAGFPAELH NVQSVHTVYL YGNQLDEFPM NLPKNVRVLH LQENNIQTIS RAALAQLLKL EELHLDDNSI STVGVEDGAF REAISLKLLF LSKNHLSSVP VGLPVDLQEL RVDENRIAVI SDMAFQNLTS LERLIVDGNL LTNKGIAEGT FSHLTKLKEF SIVRNSLSHP PPDLPGTHLI RLYLQDNQIN HIPLTAFSNL RKLERLDISN NQLRMLTQGV FDNLSNLKQL TARNNPWFCD CSIKWVTEWL KYIPSSLNVR GFMCQGPEQV RGMAVRELNM NLLSCPTTTP GLPLFTPAPS TASPTTQPPT LSIPNPSRSY TPPTPTTSKL PTIPDWDGRE RVTPPISERI QLSIHFVNDT SIQVSWLSLF TVMAYKLTWV KMGHSLVGGI VQERIVSGEK QHLSLVNLEP RSTYRICLVP LDAFNYRAVE DTICSEATTH ASYLNNGSNT ASSHEQTTSH SMGSPFLEHH HHHH General References Haines B.P., et al. (2006) Dev. -
Recombinant Human Fibronectin Leucine Rich Transmembrane Protein 2/FLRT2 (C-6His)
9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-7320: Recombinant Human Fibronectin Leucine Rich Transmembrane Protein 2/FLRT2 (C-6His) Gene : FLRT2 Gene ID : 23768 Uniprot ID : O43155 Description Source: Human Cells. MW :57.3kD. Recombinant Human FLRT2 is produced by our Mammalian expression system and the target gene encoding Cys36-Ser539 is expressed with a 6His tag at the C-terminus. Fibronectin Leucine Rich Transmembrane protein 2 (FLRT2) is a member of the fibronectin leucine rich transmembrane protein (FLRT) family. The three fibronectin leucine-rich repeat transmembrane (FLRT) proteins: FLRT1, FLRT2 and FLRT3, all contain 10 leucine-rich repeats (LRR), a type III fibronectin (FN) domain, followed by the transmembrane region, and a short cytoplasmic tail. FLRT proteins have dual properties as regulators of cell adhesion and potentiators of fibroblast growth factor (FGF) mediated signalling. The fibronectin domain of all three FLRTs can bind FGF receptors. This binding is thought to regulate FGF signaling during development. The LRR domains are responsible for both the localization of FLRTs in areas of cell contact and homotypic cell cell association. FLRT2 is expressed in a subset of the sclerotome, adjacent to the region that forms the syndetome, suggesting its involvement in the FGF signalling pathway. Product Info Amount : 10 µg / 50 µg Content : Lyophilized from a 0.2 µm filtered solution of 20mM PB, 150mM NaCl, pH 7.2. Lyophilized protein should be stored at -20°C, though stable at room temperature for 3 weeks. Storage condition : Reconstituted protein solution can be stored at 4-7°C for 2-7 days. -
Synaptic Modulators Nrxn1 and Nrxn3 Are Disregulated in a Disc1 Mouse
Letters to the Editor 585 National University of Ireland Galway, Galway, Ireland; 4Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; 5Center for Integrated Molecular Brain Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark and 6Department of Psychiatry, Laureate Institute for Brain Research, University of Oklahoma College of Medicine, Tulsa, OK, USA E-mail: [email protected] 7These senior authors contributed equally to this paper. References 1 Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M et al. Biological Psychiatry 2002; 51: 715–722. 2 Cannon DM, Ichise M, Rollis D, Klaver JM, Gandhi SK, Charney DS et al. Biol Psychiatry 2007; 15: 870–877. 3 Cannon DM, Ichise M, Fromm SJ, Nugent AC, Rollis D, Gandhi SK et al. Biol Psychiatry 2006; 60: 207–217. 4 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. American Journal of Human Genetics 2007; 81: 559–575. Figure 1 Map of t-values from voxel-wise analysis of 5 Shioe K, Ichimiya T, Suhara T, Takano A, Sudo Y, Yasuno F et al. Synapse 2003; 48: 184–188. rs6741892, overlaid on a sample axial magnetic resonance 6 Kalbitzer J, Frokjaer VG, Erritzoe D, Svarer C, Cumming P, imaging slice at the level of the medial thalamus (z = 6 mm). Nielsen FA et al. Neuroimage 2009; 45: 280–285. Bilaterally, T-allele carriers (n = 13) have greater serotonin- 7 Erritzoe D, Holst K, Frokjaer VG, Licht CL, Kalbitzer J, Nielsen FA transporter-binding potential than AA homozygotes (n = 42). -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2017 Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts Zabinyakov, Nikita Zabinyakov, N. (2017). Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27775 http://hdl.handle.net/11023/3639 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts by Nikita Zabinyakov A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOMEDICAL ENGINEERING CALGARY, ALBERTA JANUARY 2017 © Nikita Zabinyakov 2017 Abstract Applied mechanical forces, such as those resulting from fluid flow, trigger cells to change their functional behavior or phenotype. However, there is little known about how fluid flow affects fibroblasts. The hypothesis of this thesis is that dermal fibroblasts undergo significant changes of expression of differentiation genes after exposure to fluid flow (or shear stress). To test the hypothesis, human dermal fibroblasts were exposed to laminar steady fluid flow for 20 and 40 hours and RNA was collected for microarray analysis. -
ADHD) Gene Networks in Children of Both African American and European American Ancestry
G C A T T A C G G C A T genes Article Rare Recurrent Variants in Noncoding Regions Impact Attention-Deficit Hyperactivity Disorder (ADHD) Gene Networks in Children of both African American and European American Ancestry Yichuan Liu 1 , Xiao Chang 1, Hui-Qi Qu 1 , Lifeng Tian 1 , Joseph Glessner 1, Jingchun Qu 1, Dong Li 1, Haijun Qiu 1, Patrick Sleiman 1,2 and Hakon Hakonarson 1,2,3,* 1 Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; [email protected] (Y.L.); [email protected] (X.C.); [email protected] (H.-Q.Q.); [email protected] (L.T.); [email protected] (J.G.); [email protected] (J.Q.); [email protected] (D.L.); [email protected] (H.Q.); [email protected] (P.S.) 2 Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Department of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA * Correspondence: [email protected]; Tel.: +1-267-426-0088 Abstract: Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with poorly understood molecular mechanisms that results in significant impairment in children. In this study, we sought to assess the role of rare recurrent variants in non-European populations and outside of coding regions. We generated whole genome sequence (WGS) data on 875 individuals, Citation: Liu, Y.; Chang, X.; Qu, including 205 ADHD cases and 670 non-ADHD controls. The cases included 116 African Americans H.-Q.; Tian, L.; Glessner, J.; Qu, J.; Li, (AA) and 89 European Americans (EA), and the controls included 408 AA and 262 EA. -
FLRT Proteins Act As Guidance Cues for Migrating Cortical Interneurons
Nom/Logotip de la Universitat on s’ha llegit la tesi FLRT proteins act as guidance cues for migrating cortical interneurons Catherine Fleitas Pérez http://hdl.handle.net/10803/378646 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. -
Association of Neurexin 3 Polymorphisms with Smoking Behavior
Genes, Brain and Behavior (2012) 11: 704–711 doi: 10.1111/j.1601-183X.2012.00815.x Association of Neurexin 3 polymorphisms with smoking behavior E. Docampo†,M.Ribases´ ‡,§,¶, M. Gratacos` †,E. smoking behavior, and strongly implicate this gene in Bruguera¶, C. Cabezas∗∗,C.Sanchez-Mora´ ‡,G. genetic vulnerability to addictive behaviors. Nieva§,¶, D. Puente††, J. M. Argimon-Pallas` ‡‡, Keywords: Addiction, association, NRXN3, smoking, SNP M. Casas§,¶,§§, R. Rabionet∗,† and X. Estivill† Received 26 Jan 2012, revised 21 Mar 2012 and 22 May 2012, accepted for publication 11 June 2012 †Genes and Disease Program, Centre for Genomic Regulation (CRG) and UPF and Centro de Investigacion´ Biomedica´ en Red en Epidemiología y Salud Publica´ (CIBERESP), ‡Psychiatric Genetics Unit, Vall d’Hebron Research Institute (VHIR), According to the 2011 World Health Organization report on §Biomedical Network Research Centre on Mental Health the global tobacco epidemic, tobacco kills nearly 6 million (CIBERSAM), ¶Department of Psychiatry, Hospital Universitari people each year, causing hundreds of billions of dollars of Vall d’Hebron, **Subdireccio´ General de PromociodelaSalut,´ economic damage worldwide (WHO 2011). In fact, smoking Direccio´ General de Salut Publica,´ Departament de Salut, is the single greatest contributor to preventable ill health and ††Institut Universitari d’InvestigacioenAtenci´ oPrim´ aria` Jordi premature death (reviewed in Bierut 2011). The development Gol, ‡‡Divisio´ d’Avaluacio,´ Servei CataladelaSalut,and` of nicotine addiction is influenced by environmental and §§Department of Psychiatry and Legal Medicine, Universitat genetic factors, and while environmental factors have a Autonoma` de Barcelona, Catalonia, Spain stronger influence on initiation, genetic factors play a more *Corresponding author: R. Rabionet, Genes and Disease Pro- significant role in the transition from regular use to addiction gram, Center for Genomic Regulation (CRG-UPF), C/Dr. -
Transcriptomic Causal Networks Identified Patterns of Differential Gene Regulation in Human Brain from Schizophrenia Cases Versus Controls
Transcriptomic Causal Networks identified patterns of differential gene regulation in human brain from Schizophrenia cases versus controls Akram Yazdani1, Raul Mendez-Giraldez2, Michael R Kosorok3, Panos Roussos1,4,5 1Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA 2Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, NC, USA 3Department of Biostatistics, University of North Carolina at Chapel Hill, NC, USA 4Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA 5Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA Abstract Common and complex traits are the consequence of the interaction and regulation of multiple genes simultaneously, which work in a coordinated way. However, the vast majority of studies focus on the differential expression of one individual gene at a time. Here, we aim to provide insight into the underlying relationships of the genes expressed in the human brain in cases with schizophrenia (SCZ) and controls. We introduced a novel approach to identify differential gene regulatory patterns and identify a set of essential genes in the brain tissue. Our method integrates genetic, transcriptomic, and Hi-C data and generates a transcriptomic-causal network. Employing this approach for analysis of RNA-seq data from CommonMind Consortium, we identified differential regulatory patterns for SCZ cases and control groups to unveil the mechanisms that control the transcription of the genes in the human brain. Our analysis identified modules with a high number of SCZ-associated genes as well as assessing the relationship of the hubs with their down-stream genes in both, cases and controls. -
Genetic Analysis of FLRT Protein Family During Early Mouse Embryonic Development
Genetic analysis of the FLRT family of proteins during early mouse embryonic development Dissertation Der Fakultät für Biologie der Ludwig-Maximilians-Universität München Eingereicht am 17. Februar 2009 von Christian Erlacher 1. Gutachter: Prof. Dr. Rüdiger Klein 2. Gutachter: PD Dr. Angelika Böttger Tag der mündlichen Prüfung: 24.04.2009 Work presented in this dissertation was performed in the laboratory of Prof. Dr. Rüdiger Klein, Department of Molecular Neurobiology, Max Planck Institute of Neurobiology, Martinsried, Germany. Work was performed under the supervision of Prof. Dr. Rüdiger Klein and Dr. Joaquim E g e a Ehrenwörtliche Versicherung Ich versichere hiermit ehrenwörtlich, dass die vorgelegte Dissertation von mir selbständig und ohne unerlaubte Beihilfe angefertigt ist. München, den (Unterschrift) Erklärung Hiermit erkläre ich, dass ich mich anderweitig einer Doktorprüfung ohne Erfolg nicht unterzogen habe. München, den (Unterschrift) Publication from the work presented in this dissertation # Joaquim E g e a* , Christian Erlacher*, Eloi Montanez, Ingo Burtscher, Satoru Yamagishi, Martin Heß, Falko Hampel, Rodrigo Sanchez, Maria Teresa Rodriguez-Manzaneque, Michael R. Bösl, Reinhard Fässler, Heiko Lickert, and Rüdiger Klein# „Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation.“ Genes & Development 22, Nr. 23 (Dec 2008): 3349-3362. * and #: These authors contributed equally to this work. Für Margareta und Hans Table of contents Abbreviations V List of Figures IX 1. Introduction 1 1.1. Preimplantation development 3 1.2. Postimplantation development 4 1.3. Axis specification 8 1.4. Molecular basis of axis formation 11 1.5. Gastrulation 15 1.6. Molecular mechanisms guiding gastrulation 18 1.7. -
Somamer Reagents Generated to Human Proteins Number Somamer Seqid Analyte Name Uniprot ID 1 5227-60
SOMAmer Reagents Generated to Human Proteins The exact content of any pre-specified menu offered by SomaLogic may be altered on an ongoing basis, including the addition of SOMAmer reagents as they are created, and the removal of others if deemed necessary, as we continue to improve the performance of the SOMAscan assay. However, the client will know the exact content at the time of study contracting. SomaLogic reserves the right to alter the menu at any time in its sole discretion. Number SOMAmer SeqID Analyte Name UniProt ID 1 5227-60 [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 1, mitochondrial Q15118 2 14156-33 14-3-3 protein beta/alpha P31946 3 14157-21 14-3-3 protein epsilon P62258 P31946, P62258, P61981, Q04917, 4 4179-57 14-3-3 protein family P27348, P63104, P31947 5 4829-43 14-3-3 protein sigma P31947 6 7625-27 14-3-3 protein theta P27348 7 5858-6 14-3-3 protein zeta/delta P63104 8 4995-16 15-hydroxyprostaglandin dehydrogenase [NAD(+)] P15428 9 4563-61 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 P19174 10 10361-25 2'-5'-oligoadenylate synthase 1 P00973 11 3898-5 26S proteasome non-ATPase regulatory subunit 7 P51665 12 5230-99 3-hydroxy-3-methylglutaryl-coenzyme A reductase P04035 13 4217-49 3-hydroxyacyl-CoA dehydrogenase type-2 Q99714 14 5861-78 3-hydroxyanthranilate 3,4-dioxygenase P46952 15 4693-72 3-hydroxyisobutyrate dehydrogenase, mitochondrial P31937 16 4460-8 3-phosphoinositide-dependent protein kinase 1 O15530 17 5026-66 40S ribosomal protein S3 P23396 18 5484-63 40S ribosomal protein -
Cartography of Neurexin Alternative Splicing Mapped by Single
Cartography of neurexin alternative splicing mapped PNAS PLUS by single-molecule long-read mRNA sequencing Barbara Treutleina,b,1, Ozgun Gokcec,1, Stephen R. Quakea,b,d,2, and Thomas C. Südhofc,d,2 Departments of aBioengineering and cMolecular and Cellular Physiology, School of Medicine, bDepartment of Applied Physics, and dHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305 Contributed by Thomas C. Südhof, February 24, 2014 (sent for review January 24, 2014) Neurexins are evolutionarily conserved presynaptic cell-adhesion α-andβ-neurexins contain different extracellular sequences molecules that are essential for normal synapse formation and but identical transmembrane regions and short cytoplasmic tails. synaptic transmission. Indirect evidence has indicated that exten- Specifically, the extracellular sequences of α-neurexins are sive alternative splicing of neurexin mRNAs may produce hundreds composed of six LNS (laminin-α, neurexin, sex hormone-binding if not thousands of neurexin isoforms, but no direct evidence for globulin) domains with three interspersed EGF-like repeats such diversity has been available. Here we use unbiased long-read followed by an O-linked sugar attachment sequence and a con- sequencing of full-length neurexin (Nrxn)1α, Nrxn1β,Nrxn2β, served cysteine loop sequence (8, 15). In contrast, the extracel- Nrxn3α, and Nrxn3β mRNAs to systematically assess how many lular sequences of β-neurexins comprise a short β-neurexin– sites of alternative splicing are used in neurexins with a significant specific sequence, and then splice into the sixth LNS domain of frequency, and whether alternative splicing events at these sites α-neurexins, from which point on β-neurexins are identical to are independent of each other.