Synaptic Modulators Nrxn1 and Nrxn3 Are Disregulated in a Disc1 Mouse

Total Page:16

File Type:pdf, Size:1020Kb

Synaptic Modulators Nrxn1 and Nrxn3 Are Disregulated in a Disc1 Mouse Letters to the Editor 585 National University of Ireland Galway, Galway, Ireland; 4Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; 5Center for Integrated Molecular Brain Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark and 6Department of Psychiatry, Laureate Institute for Brain Research, University of Oklahoma College of Medicine, Tulsa, OK, USA E-mail: [email protected] 7These senior authors contributed equally to this paper. References 1 Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M et al. Biological Psychiatry 2002; 51: 715–722. 2 Cannon DM, Ichise M, Rollis D, Klaver JM, Gandhi SK, Charney DS et al. Biol Psychiatry 2007; 15: 870–877. 3 Cannon DM, Ichise M, Fromm SJ, Nugent AC, Rollis D, Gandhi SK et al. Biol Psychiatry 2006; 60: 207–217. 4 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. American Journal of Human Genetics 2007; 81: 559–575. Figure 1 Map of t-values from voxel-wise analysis of 5 Shioe K, Ichimiya T, Suhara T, Takano A, Sudo Y, Yasuno F et al. Synapse 2003; 48: 184–188. rs6741892, overlaid on a sample axial magnetic resonance 6 Kalbitzer J, Frokjaer VG, Erritzoe D, Svarer C, Cumming P, imaging slice at the level of the medial thalamus (z = 6 mm). Nielsen FA et al. Neuroimage 2009; 45: 280–285. Bilaterally, T-allele carriers (n = 13) have greater serotonin- 7 Erritzoe D, Holst K, Frokjaer VG, Licht CL, Kalbitzer J, Nielsen FA transporter-binding potential than AA homozygotes (n = 42). et al. J Neurosci 2010; 30: 3391–3397. The color bar indicates the range of t-values displayed (max 8 Frey PA. FASEB J 1996; 10: 461–470. t = 6.56, df = 53, P = 2.3 Â 10À8). 9 Blakely RD, Ramamoorthy S, Schroeter S, Qian Y, Apparsundaram S, Galli A et al. Biol Psychiatry 1998; 44: 169–178. 10 Blakely RD, De Felice LJ, Hartzell HC. J Exp Biol 1994; 196: 263–281. may also have a role in N-glycosylation, which is important for surface expression of 5-HTT.10 To our knowledge, this is the first GWAS of brain 5-HTT. These preliminary results suggest that neuro- Synaptic modulators Nrxn1 imaging phenotypes could represent informative targets for a GWAS, even in relatively small samples. and Nrxn3 are disregulated Further studies are needed to confirm these in a Disc1 mouse model of findings and determine the underlying biological mechanisms. schizophrenia Conflict of interest Molecular Psychiatry (2011) 16, 585–587; doi:10.1038/ The authors declare no conflict of interest. mp.2010.134; published online 15 February 2011 Acknowledgments DISC1 is a leading candidate gene for schizophrenia This research is funded by the NIMH Intramural and related disorders. It has several modes of action Research Program. through protein–protein interaction at multiple cel- lular locations, including the synapse.1,2 Previously, X Liu1, DM Cannon2,3, N Akula1, PR Moya4, we developed and characterised a mouse line carry- GM Knudsen5, TE Arentzen5, J Steele1, G Laje1, ing an ENU-induced Disc1 missense mutation, L100P. WC Drevets2,6,7 and FJ McMahon1,7 The mice exhibit behavioural, anatomical and phar- 1Genetics of Mood and Anxiety Disorders Section, macological phenotypes related to schizophrenia; National Institute of Mental Health, National schizophrenia-like endophenotypes, including Institutes of Health, Bethesda, MD, USA; 2Section on deficits in pre-pulse inhibition, latent inhibition Neuroimaging in Mood and Anxiety Disorders, and working memory, and, at the molecular level, National Institute of Mental Health, National reduced DISC1–PDE4B interaction.3 Here, we show Institutes of Health, Bethesda, MD, USA; 3Department that the L100P mutation disregulates expression of Psychiatry, Clinical Neuroimaging Laboratory, of the synaptic modulators Nrxn1 and Nrxn3 at Molecular Psychiatry Letters to the Editor 586 Figure 1 Expression analysis using Taqman qRT-PCR. (a), fold change and P-values (Mann–Whitney’s U-test) for Nrxn1 and Nrxn3 from the Illumina array, qRT-PCR on array RNA and qRT-PCR on an independent sample set. (b and c), Developmental expression profiles for Nrxn1 and Nrxn3 from E13 through adulthood (12 weeks). RNA from E13–E18 from whole brain, RNA from P1–adult from hippocampal tissue. key points during development, as well as in the observed at E15, E18, P7 and adult, with the largest adult mouse. Nrxn1 is involved in maintenance of differences being increased expression in the L100P synaptic junctions and is a mediator of intracellular mutant at E15 and P7, and decreased expression at E18 signalling, modulating maturation and differentiation (Figures 1b and c). of synapses.4 Nrxn3 is a membrane protein involved It is noteworthy that the L100P Nrxn1 and Nrxn3 in cell adhesion, synaptic transmission and neuro- expression profiles differ most from the wildtype transmitter secretion.4 between E18, a stage of synaptic formation and Both the Neurexin gene family and DISC1 have neuronal maturation, and P7, when neurite out- been independently implicated in schizophrenia and growth, myelination, synaptic pruning and apoptosis autism. A missense mutation and copy number occur.9 Disregulation of such key processes may lead variants in NRXN1 were first linked to autism (ref. 5 to alterations in brain development and function. and references within), and copy number variants in Kitamura et al.10 showed that both Nrxn1 and Nrxn3 this gene were subsequently reported to be more are synaptic activity-dependent genes; they are down- abundant in schizophrenia than in controls (ref. 6 and regulated in the presence of the potent neurotoxin references within). Recent pathway analysis of the tetrodotoxin and somewhat upregulated by it’s genes identified by three large genome-wide associa- withdrawal. Taking note of the emerging evidence tion studies of bipolar disorder and schizophrenia for a synaptic function for Disc1,2 we hypothesise (ISC, GAIN and WTCCC) suggested that perturbation that in the developing embryo, the presence of of cell adhesion molecules may be central to devel- mutant Disc1 at the synapse affects synaptic function, opment of neuropsychiatric illness and, furthermore, leading to a change in synaptic activity-mediated identified NRXN1 as being one of two genes asso- transcription of Nrxn1, Nrxn3 and other genes. ciated in all three studies.7 TheroleofDISC1 in We speculate that this change in transcription of schizophrenia and bipolar disorder is well established,1 Nrxn1 and 3 (and possibly other synaptic genes) but a number of recent studies of autism spectrum results in altered formation and function of inhibitory disorders have found association between DISC1 and excitatory synapses during this critical develop- variants and these conditions also (ref. 8 and references mental period. within). To summarise, here we demonstrate, for the first We used Illumina (Illumina, Essex, UK) whole- time, that there is a DISC1-dependant mechanism genome expression profiling of 47 000 mouse brain for regulating neurexin gene expression. The striking transcripts to compare hippocampal samples from the disregulation of Nrxn1 expression in the L100P Disc1 Disc1 L100P mutant line (n = 12) and wild-type control mutant animals provides a first functional link mice (n = 12) at 12 weeks of age. Expression of both between these two prominent genetic candidates for Nrxn1 and Nrxn3 showed a modest, but significant risk of schizophrenia and of autism. upregulation in the L100P mutant mice compared with wild-type controls (Figure 1a). This was confirmed by quantitative RT-PCR analysis of both the original Conflict of interest array RNA and an independent sample set (Figure 1a). This prompted us to examine Nrxn1 and Nrxn3 The authors declare no conflict of interest. expression profiles across development in the L100P mutant. Expression profiles of both genes in the mutant SM Brown1, SJ Clapcote2, JK Millar1, HS Torrance1, animals differed strikingly from those observed in wild- SM Anderson1, R Walker1, A Rampino1, JC Roder3, type mice. Significant differences in expression were PA Thomson1,4, DJ Porteous1,4 and KL Evans1,4 Molecular Psychiatry Letters to the Editor 587 1Psychiatric Genetics, Medical Genetics Section, system, has been implicated in the etiology of BD, Centre for Molecular Medicine and Institute of genetic association findings have been inconsistent.2 Genetics and Molecular Medicine, Molecular One of the most strongly associated polymorphisms Medicine Centre, Western General Hospital, in the recent Wellcome Trust Case Control Consor- University of Edinburgh, Edinburgh, UK; tium genome-wide association study of BD (1868 2Centre for Cognitive Ageing and Cognitive cases, 2938 controls)3 is located in the GABRB1 gene, Epidemiology, Medical Genetics Section, Molecular which encodes the GABAA receptor b1 subunit. The Medicine Centre, Western General consortium conducted a further analysis to reduce Hospital, University of Edinburgh, Edinburgh, UK; biological heterogeneity. In this second analysis, the 3Samuel Lunenfeld Research Institute, strongest signal at this polymorphism was found in Mount Sinai Hospital, Joseph and Wolf Lebovic the subsample meeting Research Diagnostic Criteria4 Health Complex, 600 University Ave., for schizoaffective, bipolar type (SABP) (n = 279). Toronto, ON, Canada and 4Institute of Membrane and Association signals were also found in the SABP Systems Biology, University of Leeds, Leeds, UK subsample at GABRA4, GABRB3, GABRA5, and E-mail: [email protected] GABRR3 (experiment-wide P = 6.6 Â 10À5). This pro- vided strong, independent evidence in support of References the hypothesis that variation in other GABAA receptor genes is associated with risk for the SABP phenotype. 1 Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. No association was found with schizophrenia. Mol Psychiatry 2008; 13: 36–64. We aimed to replicate these findings in our German 2 Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop AJ. et al. Nat Neurosci 2010; 13: 327–332. samples using the set-based approach.
Recommended publications
  • ADHD) Gene Networks in Children of Both African American and European American Ancestry
    G C A T T A C G G C A T genes Article Rare Recurrent Variants in Noncoding Regions Impact Attention-Deficit Hyperactivity Disorder (ADHD) Gene Networks in Children of both African American and European American Ancestry Yichuan Liu 1 , Xiao Chang 1, Hui-Qi Qu 1 , Lifeng Tian 1 , Joseph Glessner 1, Jingchun Qu 1, Dong Li 1, Haijun Qiu 1, Patrick Sleiman 1,2 and Hakon Hakonarson 1,2,3,* 1 Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; [email protected] (Y.L.); [email protected] (X.C.); [email protected] (H.-Q.Q.); [email protected] (L.T.); [email protected] (J.G.); [email protected] (J.Q.); [email protected] (D.L.); [email protected] (H.Q.); [email protected] (P.S.) 2 Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Department of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA * Correspondence: [email protected]; Tel.: +1-267-426-0088 Abstract: Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with poorly understood molecular mechanisms that results in significant impairment in children. In this study, we sought to assess the role of rare recurrent variants in non-European populations and outside of coding regions. We generated whole genome sequence (WGS) data on 875 individuals, Citation: Liu, Y.; Chang, X.; Qu, including 205 ADHD cases and 670 non-ADHD controls. The cases included 116 African Americans H.-Q.; Tian, L.; Glessner, J.; Qu, J.; Li, (AA) and 89 European Americans (EA), and the controls included 408 AA and 262 EA.
    [Show full text]
  • Genome-Wide Copy Number Variation Analysis in a Chinese Autism
    www.nature.com/scientificreports OPEN Genome-wide copy number variation analysis in a Chinese autism spectrum disorder cohort Received: 11 November 2016 Hui Guo1,2,*, Yu Peng1,*, Zhengmao Hu1, Ying Li1, Guanglei Xun3, Jianjun Ou2, Liangdan Sun4, Accepted: 03 February 2017 Zhimin Xiong5, Yanling Liu1, Tianyun Wang1, Jingjing Chen1, Lu Xia1, Ting Bai1, Yidong Shen2, Published: 10 March 2017 Qi Tian1, Yiqiao Hu1, Lu Shen1, Rongjuan Zhao1, Xuejun Zhang4, Fengyu Zhang2,6, Jingping Zhao2, Xiaobing Zou7 & Kun Xia1,8,9 Autism spectrum disorder (ASD) describes a group of neurodevelopmental disorders with high heritability, although the underlying genetic determinants of ASDs remain largely unknown. Large- scale whole-genome studies of copy number variation in Han Chinese samples are still lacking. We performed a genome-wide copy number variation analysis of 343 ASD trios, 203 patients with sporadic cases and 988 controls in a Chinese population using Illumina genotyping platforms to identify CNVs and related genes that may contribute to ASD risk. We identified 32 rare CNVs larger than 1 Mb in 31 patients. ASD patients were found to carry a higher global burden of rare, large CNVs than controls. Recurrent de novo or case-private CNVs were found at 15q11-13, Xp22.3, 15q13.1–13.2, 3p26.3 and 2p12. The de novo 15q11–13 duplication was more prevalent in this Chinese population than in those with European ancestry. Several genes, including GRAMD2 and STAM, were implicated as novel ASD risk genes when integrating whole-genome CNVs and whole-exome sequencing data. We also identified several CNVs that include known ASD genes (SHANK3, CDH10, CSMD1) or genes involved in nervous system development (NYAP2, ST6GAL2, GRM6).
    [Show full text]
  • Association of Neurexin 3 Polymorphisms with Smoking Behavior
    Genes, Brain and Behavior (2012) 11: 704–711 doi: 10.1111/j.1601-183X.2012.00815.x Association of Neurexin 3 polymorphisms with smoking behavior E. Docampo†,M.Ribases´ ‡,§,¶, M. Gratacos` †,E. smoking behavior, and strongly implicate this gene in Bruguera¶, C. Cabezas∗∗,C.Sanchez-Mora´ ‡,G. genetic vulnerability to addictive behaviors. Nieva§,¶, D. Puente††, J. M. Argimon-Pallas` ‡‡, Keywords: Addiction, association, NRXN3, smoking, SNP M. Casas§,¶,§§, R. Rabionet∗,† and X. Estivill† Received 26 Jan 2012, revised 21 Mar 2012 and 22 May 2012, accepted for publication 11 June 2012 †Genes and Disease Program, Centre for Genomic Regulation (CRG) and UPF and Centro de Investigacion´ Biomedica´ en Red en Epidemiología y Salud Publica´ (CIBERESP), ‡Psychiatric Genetics Unit, Vall d’Hebron Research Institute (VHIR), According to the 2011 World Health Organization report on §Biomedical Network Research Centre on Mental Health the global tobacco epidemic, tobacco kills nearly 6 million (CIBERSAM), ¶Department of Psychiatry, Hospital Universitari people each year, causing hundreds of billions of dollars of Vall d’Hebron, **Subdireccio´ General de PromociodelaSalut,´ economic damage worldwide (WHO 2011). In fact, smoking Direccio´ General de Salut Publica,´ Departament de Salut, is the single greatest contributor to preventable ill health and ††Institut Universitari d’InvestigacioenAtenci´ oPrim´ aria` Jordi premature death (reviewed in Bierut 2011). The development Gol, ‡‡Divisio´ d’Avaluacio,´ Servei CataladelaSalut,and` of nicotine addiction is influenced by environmental and §§Department of Psychiatry and Legal Medicine, Universitat genetic factors, and while environmental factors have a Autonoma` de Barcelona, Catalonia, Spain stronger influence on initiation, genetic factors play a more *Corresponding author: R. Rabionet, Genes and Disease Pro- significant role in the transition from regular use to addiction gram, Center for Genomic Regulation (CRG-UPF), C/Dr.
    [Show full text]
  • Mycobacterium Tuberculosis-Induced Maternal Immune Activation Promotes Autism-Like Phenotype in Infected Mice Offspring
    International Journal of Environmental Research and Public Health Article Mycobacterium tuberculosis-Induced Maternal Immune Activation Promotes Autism-Like Phenotype in Infected Mice Offspring Wadzanai Manjeese 1 , Nontobeko E. Mvubu 2 , Adrie J. C. Steyn 2,3,4 and Thabisile Mpofana 1,* 1 Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa; [email protected] 2 Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Durban 4001, South Africa; [email protected] (N.E.M.); [email protected] (A.J.C.S.) 3 Africa Health Research Institute, K-Rith Tower Building, Nelson Mandela School of Medicine, Durban 4001, South Africa 4 Department of Microbiology, University of Alabama, Birmingham, AL 35294, USA * Correspondence: [email protected] Abstract: The maternal system’s exposure to pathogens during pregnancy influences fetal brain development causing a persistent inflammation characterized by elevated pro-inflammatory cytokine levels in offspring. Mycobacterium tuberculosis (Mtb) is a global pathogen that causes tuberculosis, a pandemic responsible for health and economic burdens. Although it is known that maternal Citation: Manjeese, W.; Mvubu, N.E.; infections increase the risk of autism spectrum disorder (ASD), it is not known whether Mtb infection Steyn, A.J.C.; Mpofana, T. is sufficient to induce ASD associated behaviors, immune dysregulation and altered expression Mycobacterium tuberculosis-Induced of synaptic regulatory genes. The current study infected pregnant Balb/c mice with Mtb H37Rv Maternal Immune Activation and valproic acid (VPA) individually and in combination. Plasma cytokine profiles were measured Promotes Autism-Like Phenotype in Infected Mice Offspring.
    [Show full text]
  • Transcriptomic Causal Networks Identified Patterns of Differential Gene Regulation in Human Brain from Schizophrenia Cases Versus Controls
    Transcriptomic Causal Networks identified patterns of differential gene regulation in human brain from Schizophrenia cases versus controls Akram Yazdani1, Raul Mendez-Giraldez2, Michael R Kosorok3, Panos Roussos1,4,5 1Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA 2Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, NC, USA 3Department of Biostatistics, University of North Carolina at Chapel Hill, NC, USA 4Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA 5Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA Abstract Common and complex traits are the consequence of the interaction and regulation of multiple genes simultaneously, which work in a coordinated way. However, the vast majority of studies focus on the differential expression of one individual gene at a time. Here, we aim to provide insight into the underlying relationships of the genes expressed in the human brain in cases with schizophrenia (SCZ) and controls. We introduced a novel approach to identify differential gene regulatory patterns and identify a set of essential genes in the brain tissue. Our method integrates genetic, transcriptomic, and Hi-C data and generates a transcriptomic-causal network. Employing this approach for analysis of RNA-seq data from CommonMind Consortium, we identified differential regulatory patterns for SCZ cases and control groups to unveil the mechanisms that control the transcription of the genes in the human brain. Our analysis identified modules with a high number of SCZ-associated genes as well as assessing the relationship of the hubs with their down-stream genes in both, cases and controls.
    [Show full text]
  • Cartography of Neurexin Alternative Splicing Mapped by Single
    Cartography of neurexin alternative splicing mapped PNAS PLUS by single-molecule long-read mRNA sequencing Barbara Treutleina,b,1, Ozgun Gokcec,1, Stephen R. Quakea,b,d,2, and Thomas C. Südhofc,d,2 Departments of aBioengineering and cMolecular and Cellular Physiology, School of Medicine, bDepartment of Applied Physics, and dHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305 Contributed by Thomas C. Südhof, February 24, 2014 (sent for review January 24, 2014) Neurexins are evolutionarily conserved presynaptic cell-adhesion α-andβ-neurexins contain different extracellular sequences molecules that are essential for normal synapse formation and but identical transmembrane regions and short cytoplasmic tails. synaptic transmission. Indirect evidence has indicated that exten- Specifically, the extracellular sequences of α-neurexins are sive alternative splicing of neurexin mRNAs may produce hundreds composed of six LNS (laminin-α, neurexin, sex hormone-binding if not thousands of neurexin isoforms, but no direct evidence for globulin) domains with three interspersed EGF-like repeats such diversity has been available. Here we use unbiased long-read followed by an O-linked sugar attachment sequence and a con- sequencing of full-length neurexin (Nrxn)1α, Nrxn1β,Nrxn2β, served cysteine loop sequence (8, 15). In contrast, the extracel- Nrxn3α, and Nrxn3β mRNAs to systematically assess how many lular sequences of β-neurexins comprise a short β-neurexin– sites of alternative splicing are used in neurexins with a significant specific sequence, and then splice into the sixth LNS domain of frequency, and whether alternative splicing events at these sites α-neurexins, from which point on β-neurexins are identical to are independent of each other.
    [Show full text]
  • Molecular Mechanisms: Researchers Light up Interactions Between Neurons
    Spectrum | Autism Research News https://www.spectrumnews.org NEWS Molecular mechanisms: Researchers light up interactions between neurons BY JESSICA WRIGHT 30 NOVEMBER 2010 Pretty picture: Engineered neuroligins (green) and neurexins (blue) bind at the sites of communication (red) between neurons. Researchers have developed a technique to detect interactions in live neurons between neuroligins and neurexins — two proteins known to bind at the junction between neurons, according to a study published 29 October in Cell. Neurons relay information across the brain by releasing molecules, called neurotransmitters, across synapses, the junctions between neurons. Neurexins and neuroligins, which jut out of the transmitting and receiving ends of neurons, respectively, bind to each other on neighboring cells, stabilizing an active synapse. Researchers induced some live neurons, removed from a rat hippocampus, to express an engineered version of neurexin-1 (NRXN1) that can add a small molecule called biotin to another protein. They then induced other neurons to express a modified form of neuroligin-1 (NLGN1) that has a biotin-receiving domain. When the two proteins bind at a synapse, the modified NRXN1 attaches biotin to the modified NLGN1. Using this clever technique and a fluorescent dye that binds to biotin, the researchers can look at 1 / 2 Spectrum | Autism Research News https://www.spectrumnews.org the live interaction between NRXN1 and NLGN1. They can also detect the number of interactions by quantifying the fluorescent signal. When the neurons release neurotransmitters, the researchers found, the engineered proteins interact more. This suggests that NLGN1-NRXN1 interactions increase in an active synapse. Using dyes to distinguish interactions before and after activation, the researchers show that neuron activation increases the amount NRXN1 and NLGN1 at the cell surface.
    [Show full text]
  • Widespread Sex Differences in Gene Expression and Splicing in the Adult Human Brain
    ARTICLE Received 26 Mar 2013 | Accepted 15 Oct 2013 | Published 22 Nov 2013 DOI: 10.1038/ncomms3771 OPEN Widespread sex differences in gene expression and splicing in the adult human brain Daniah Trabzuni1,2,*, Adaikalavan Ramasamy3,*, Sabaena Imran1, Robert Walker4, Colin Smith4, Michael E. Weale3, John Hardy1, Mina Ryten1,3 & North American Brain Expression Consortiumw There is strong evidence to show that men and women differ in terms of neurodevelopment, neurochemistry and susceptibility to neurodegenerative and neuropsychiatric disease. The molecular basis of these differences remains unclear. Progress in this field has been hampered by the lack of genome-wide information on sex differences in gene expression and in particular splicing in the human brain. Here we address this issue by using post-mortem adult human brain and spinal cord samples originating from 137 neuropathologically confirmed control individuals to study whole-genome gene expression and splicing in 12 CNS regions. We show that sex differences in gene expression and splicing are widespread in adult human brain, being detectable in all major brain regions and involving 2.5% of all expressed genes. We give examples of genes where sex-biased expression is both disease-relevant and likely to have functional consequences, and provide evidence suggesting that sex biases in expression may reflect sex-biased gene regulatory structures. 1 Reta Lilla Weston Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. 2 Department of Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia. 3 Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, 8th Floor, Tower Wing, London SE1 9RT, UK.
    [Show full text]
  • Investigation of NRXN1 Deletions: Clinical and Molecular Characterization Mindy Preston Dabell,1 Jill A
    RESEARCH ARTICLE Investigation of NRXN1 Deletions: Clinical and Molecular Characterization Mindy Preston Dabell,1 Jill A. Rosenfeld,1 Patricia Bader,2 Luis F. Escobar,3 Dima El-Khechen,3 Stephanie E. Vallee,4 Mary Beth Palko Dinulos,4 Cynthia Curry,5 Jamie Fisher,5 Raymond Tervo,6 Mark C. Hannibal,7 Kiana Siefkas,8 Philip R. Wyatt,9 Lauren Hughes,9 Rosemarie Smith,10 Sara Ellingwood,10 Yves Lacassie,11 Tracy Stroud,12 Sandra A. Farrell,13 Pedro A. Sanchez-Lara,14 Linda M. Randolph,14 Dmitriy Niyazov,15 Cathy A. Stevens,16 Cheri Schoonveld,17 David Skidmore,18 Sara MacKay,18 Judith H. Miles,19 Manikum Moodley,20 Adam Huillet,21 Nicholas J. Neill,1 Jay W. Ellison,1 Blake C. Ballif,1 and Lisa G. Shaffer1* 1Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington 2Northeast Indiana Genetic Counseling Center, Fort Wayne, Indiana 3Medical Genetics and Neurodevelopmental Center, Peyton Manning Children’s Hospital at St. Vincent, Indianapolis, Indiana 4Department of Pediatrics, Section of Medical Genetics, The Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 5Genetic Medicine of Central California, Fresno, California 6Gillette Children’s Specialty Healthcare, St. Paul, Minnesota 7Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington 8Children’s Village and Yakima Valley Memorial Hospital, Yakima, Washington 9Orillia Soldiers’ Memorial Hospital, Orillia, Ontario, Canada 10Division of Genetics, Maine Medical Center, Portland, Maine 11Department
    [Show full text]
  • Khdrbs1 Mouse Shrna Plasmid (Locus ID 20218) Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TF501967 Khdrbs1 Mouse shRNA Plasmid (Locus ID 20218) Product data: Product Type: shRNA Plasmids Product Name: Khdrbs1 Mouse shRNA Plasmid (Locus ID 20218) Locus ID: 20218 Synonyms: p62; p68; Sam68 Vector: pRFP-C-RS (TR30014) Format: Retroviral plasmids Components: Khdrbs1 - Mouse, 4 unique 29mer shRNA constructs in retroviral RFP vector(Gene ID = 20218). 5µg purified plasmid DNA per construct Non-effective 29-mer scrambled shRNA cassette in pRFP-C-RS Vector, TR30015, included for free. RefSeq: BC002051, NM_011317, NR_045036, NM_011317.1, NM_011317.2, NM_011317.3, NM_011317.4 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Khdrbs1 Mouse shRNA Plasmid (Locus ID 20218) – TF501967 Summary: Recruited and tyrosine phosphorylated by several receptor systems, for example the T-cell, leptin and insulin receptors. Once phosphorylated, functions as an adapter protein in signal transduction cascades by binding to SH2 and SH3 domain-containing proteins. Role in G2-M progression in the cell cycle. Represses CBP-dependent transcriptional activation apparently by competing with other nuclear factors for binding to CBP. Also acts as a putative regulator of mRNA stability and/or translation rates and mediates mRNA nuclear export. Positively regulates the association of constitutive transport element (CTE)-containing mRNA with large polyribosomes and translation initiation. May not be involved in the nucleocytoplasmic export of unspliced (CTE)-containing RNA species.
    [Show full text]
  • Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands That Promote Axonal Growth
    Research Article: New Research Development Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth Jeremy S. Toma,1 Konstantina Karamboulas,1,ª Matthew J. Carr,1,2,ª Adelaida Kolaj,1,3 Scott A. Yuzwa,1 Neemat Mahmud,1,3 Mekayla A. Storer,1 David R. Kaplan,1,2,4 and Freda D. Miller1,2,3,4 https://doi.org/10.1523/ENEURO.0066-20.2020 1Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada, 2Institute of Medical Sciences University of Toronto, Toronto, Ontario M5G 1A8, Canada, 3Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada, and 4Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada Abstract Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are es- sential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, in- cluding known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesen- chymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons.
    [Show full text]
  • Patterns of Sequence Conservation in Presynaptic Neural Genes
    University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science November 2006 Patterns of Sequence Conservation in Presynaptic Neural Genes Dexter Hadley University of Pennsylvania Tara Murphy University of Pennsylvania Otto Valladares University of Pennsylvania Sridhar Hannenhalli University of Pennsylvania Lyle H. Ungar University of Pennsylvania, [email protected] See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/cis_papers Recommended Citation Dexter Hadley, Tara Murphy, Otto Valladares, Sridhar Hannenhalli, Lyle H. Ungar, Junhyong Kim, and Maja Bucan, "Patterns of Sequence Conservation in Presynaptic Neural Genes", . November 2006. Reprinted from Genome Biology, Volume 7, Issue 11, November 2006, pages R105.1-R105.19. Publisher URL: http://genomebiology.com/2006/7/11/R105 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/282 For more information, please contact [email protected]. Patterns of Sequence Conservation in Presynaptic Neural Genes Abstract Background: The neuronal synapse is a fundamental functional unit in the central nervous system of animals. Because synaptic function is evolutionarily conserved, we reasoned that functional sequences of genes and related genomic elements known to play important roles in neurotransmitter release would also be conserved. Results: Evolutionary rate analysis revealed that presynaptic proteins evolve slowly, although some members of large gene families exhibit accelerated evolutionary rates relative to other family members. Comparative sequence analysis of 46 megabases spanning 150 presynaptic genes identified more than 26,000 elements that are highly conserved in eight vertebrate species, as well as a small subset of sequences (6%) that are shared among unrelated presynaptic genes.
    [Show full text]