Topoisomerase 1 Inhibition Reversibly Impairs Synaptic Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Product Insert (PDF)
Product Information CNQX Item No. 14618 CAS Registry No.: 115066-14-3 Formal Name: 1,2,3,4-tetrahydro-7-nitro-2,3-dioxo-6- quinoxalinecarbonitrile H Synonyms: 6-cyano-7-Nitroquinoxaline-2,3-dione, NC N O FG 9065 MF: C9H4N4O4 FW: 232.2 O O N N Purity: ≥98% 2 Stability: ≥2 years at -20°C H Supplied as: A crystalline solid λ UV/Vis.: max: 217, 275, 315 nm Laboratory Procedures For long term storage, we suggest that CNQX be stored as supplied at -20°C. It should be stable for at least two years. CNQX is supplied as a crystalline solid. A stock solution may be made by dissolving the CNQX in the solvent of choice. CNQX is soluble in organic solvents such as DMSO and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of CNQX in these solvents is approximately 5 and 12 mg/ml, respectively. CNQX is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, CNQX should first be dissolved in DMF and then diluted with the aqueous buffer of choice. CNQX has a solubility of approximately 0.5 mg/ml in a 1:1 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. CNQX is a competitive, non-NMDA glutamate receptor antagonist (IC50s = 0.3 and 1.5 μM for AMPA and kainate 1,2 receptors, respectively, versus IC50 = 25 μM for NMDA receptors). This compound has been used to specifically target AMPA and kainate receptor responses and thus differentiate from that of NMDA receptors. -
An Investigation Into Pro-Apoptotic Targets in Experimental Glaucoma and the Neuroprotective Effects of Ginkgo Biloba in Retinal Ganglion Cells
An investigation into pro-apoptotic targets in experimental glaucoma and the neuroprotective effects of Ginkgo biloba in retinal ganglion cells Abeir Baltmr MB ChB, FRCS (Glasg) A thesis submitted to University College London for the degree of Doctor of Medicine (Research) 2012 Glaucoma and Retinal Neurodegeneration Research Group Visual Neuroscience Institute of Ophthalmology 1 Declaration I, Abeir Baltmr, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abeir Baltmr 2 Abstract Ginkgo biloba has been advocated as a neuroprotective agent for several years in glaucoma. In this study, immunohistochemistry was used to identify known potential molecular targets of Ginkgo biloba related to retinal ganglion cell (RGC) apoptosis in experimental glaucoma, including amyloid precursor protein (APP), Aß, cytochrome c, caspase-3 and tumor necrosis factor receptor-1 (TNF-R1). Furthermore, using apoptotic inducers related to mechanisms implicated in glaucoma, namely Dimethyl sulphoxide (DMSO), ultraviolet C (UVC) and Sodium Azide (NaN3), the effects of the terpenoid fraction of Ginkgo biloba (Ginkgolide A, Ginkgolide B and Bilobalide) were investigated separately in cultured retinal ganglion cells (RGC-5). Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and morphological analysis of DMSO treated RGC-5 was performed using Hoechst 33342 stain. Immunohistochemistry showed a strong inverse correlation between Aß and APP in ocular hypertension (OHT) animals, with APP and Aß accumulation peaking at 1 and 12 weeks after intraocular pressure (IOP) elevation respectively. Cytochrome c and TNF-R1 expression peaked at 3 weeks, and active caspase 3 activity at 12 weeks after IOP elevation. -
Synthesis and Biological Evaluation
Margarida Leonor Florindo Espadinha Licenciatura em Química Aplicada Enantiopure bicyclic lactams: synthesis and biological evaluation Dissertação para obtenção do Grau de Mestre em Química Bioorgânica Orientador: Prof. Doutora Maria M. M. Santos, FF-UL Elemento de Ligação: Prof. Doutora Paula Sério Branco, FCT-UNL Presidente: Prof. Doutora Paula Sério Branco, FCT-UNL Arguente: Prof. Doutor Vasco Bonifácio, IST-CQFM Vogal: Prof. Doutora Maria M. M. Santos, FF-UL Outubro 2015 i LOMBADA biological evaluation biological dinha synthesis and and synthesis : Margarida Espa Margarida lactams bicyclic Enantiopure ii 2015 Margarida Leonor Florindo Espadinha Licenciatura em Química Aplicada Enantiopure bicyclic lactams: synthesis and biological evaluation Dissertação para obtenção do Grau de Mestre em Química Bioorgânica Orientador: Prof. Doutora Maria M. M. Santos, FF-UL Elemento de Ligação: Prof. Doutora Paula Sério Branco, FCT Presidente: Prof. Doutora Paula Sério Branco, FCT-UNL Arguente: Doutor Vasco Bonifácio, IST-CQFM Vogal: Prof. Doutora Maria M. M. Santos, FF-UL Outubro 2015 iii Enantiopure bicyclic lactams: synthesis and biological evaluation Margarida Leonor Florindo Espadinha, Copyright A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por outro qualquer meio conhecido ou que venha a ser inventado e de divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. iv Acknowledgements I would like to thank Professor Dr. Maria M. -
1750.Full.Pdf
1750 • The Journal of Neuroscience, February 3, 2010 • 30(5):1750–1759 Development/Plasticity/Repair In the Developing Rat Hippocampus, Endogenous Activation of Presynaptic Kainate Receptors Reduces GABA Release from Mossy Fiber Terminals Maddalena D. Caiati,* Sudhir Sivakumaran,* and Enrico Cherubini Neuroscience Programme, International School for Advanced Studies, 34014 Trieste, Italy Presynaptic kainate receptors regulate synaptic transmission in several brain areas but are not known to have this action at immature mossy fiber (MF) terminals, which during the first week of postnatal life release GABA, which exerts into targeted cells a depolarizing and excitatory action. Here, we report that, during the first week of postnatal life, endogenous activation of GluK1 receptors by glutamate present in the extracellular space severely depresses MF-mediated GABAergic currents [GABAA-mediated postsynaptic currents (GPSCs)]. Activation of GluK1 receptors was prevented by treating the slices with enzymatic glutamate scavengers that enhanced the clearance of glutamate from the extracellular space. The depressant effect of GluK1 on MF-GPSCs was mediated by a metabotropic process sensitive to pertussis toxin. In the presence of U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H- pyrrole-2,5-dione), a selective inhibitor of phospholipase C, along the transduction pathway downstream to G-protein, GluK1 activation increased the probability of GABA release, thus unveiling the ionotropic action of this receptor. In line with this type of action, we found that GluK1 enhanced MF excitability by directly depolarizing MF terminals via calcium-permeable cation channels. Furthermore, GluK1 dynamically regulated the direction of spike time-dependent plasticity occurring by pairing MF stimulation with postsynaptic spiking and switched spike time-dependent potentiation into depression. -
Qt267353tc Nosplash 6C08d1b
Copyright 2011 by Leslie Ann Cruz ii In Memoriam Andrew Braisted (1963-2003) Warren DeLano (1972-2009) Two of the best scientists that I had the opportunity work with at Sunesis Pharmaceuticals. So much talent. Gone too soon… iii Dedication To my husband, George, and my son, Thomas My two most favorite men. To the grandfather I never had: Dr. David T. Petty, my life-long mentor To My Family and Friends who have supported and encouraged me throughout the years: Mom, Jim, Dad, Mikey, Maria, Lyla Carolyn, Bob, Melissa, Rob, LeeAnn, Graciela, James David, Janell, Lori, Becky, Judy, Alex, Gigi Daniel, Astrid, Dave, Scott, Joice, Kwasi, Marcus Dan and Monya Jeanne and Bruce iv Acknowledgments The saying goes, “It takes a village to raise a child”. It also takes a village to raise a scientist. Thank You to All My Teachers and Mentors With Special Thanks To: St. Benedict's Elementary School Ilene Hopkins Memorial Jr. High School Timothy Sandow Thornton Fractional South High School Richard Powell and Ann Rice The University of Chicago Viresh Rawal Argonne National Laboratory John Hryn v MediChem Research Raghu Samy, Stuart Feinberg, Shankar Saha, Dimitry Kolton Sunesis Pharmaceuticals Andrew Braisted, Dan Erlanson, Jeanne Hardy, Doug Cary, Brian Cunningham, Brian Raimundo, Molly He, Michelle Arkin, Darin Allen, Warren DeLano, Jim Wells University of California, San Francisco My Adviser: Robert Fletterick, My Dissertation Committee: Holly Ingraham, Jack Taunton, My Orals Committee: Pam England, Jim Wells, Lily Jan, Kevan Shokat Chris Olson, Charly Craik, Tom Scanlan, Kip Guy, Sue Miller, Dave Agard, Bob Stroud, David Julius, Roger Nicoll, Maia Vinogradova, Fumiaki Yumoto, Phuong Nguyen, Sam Pfaff, Eric Slivka, Jeremey Wilbur, Cindy Benod, Kris Kuchenbecker, Peter Huang, Elena Sablin, Ulrike Boettcher, Kristin Krukenburg, James Kraemer, Mariano Tabios, Rebeca Choy Collaborators Marc Cox, Eva Estébanez-Perpiñá, Paul Webb, John Baxter, Stephen Mayo vi Preface My dissertation is comprised of the two projects I worked on during my graduate career. -
United States Patent (19) 11 Patent Number: 5,888,996 Farb (45) Date of Patent: Mar
USOO5888996A United States Patent (19) 11 Patent Number: 5,888,996 Farb (45) Date of Patent: Mar. 30, 1999 54 INHIBITION OF NMDA RECEPTOR Gyermek, L., et al., “Structure-Activity Relationship of ACTIVITY AND MODULATION OF Some Steroidal Hypnotic Agents,” Steroids. CCX, GLUTAMATE-MEDIATED SYNAPTC 11:117–125 (1968). ACTIVITY Wu, F.-S., et al., “Pregnenolone Sulfate: A Positive Allos teric Modulator at the N-Methyl-D-aspartate Receptor,” 75 Inventor: David H. Farb, Cambridge, Mass. Molecular Pharmacology, 40:333-336 (1991). 73 Assignee: Trustees of Boston University, Boston, Park-Chung, M., et al., “3C-Hydroxy-5B-pregnan-20-one Mass. Sulfate: A Negative Modulator of the NMDA-Induced Cur rent in Cultured Neurons,” Molecular Pharmacology, 21 Appl. No.: 559,442 46:146-150 (1994). Wieland, S., et al., “Anxiolytic Activity of the Progesterone 22 Filed: Nov. 15, 1995 Metabolite 5C-pregnan-3C-ol-20-one,” Brain Research, Related U.S. Application Data 565:263-268 (1991). Belelli, D., et al., “Anticonvulsant Profile of the Progester 63 Continuation-in-part of Ser. No. 507,757, Jul. 26, 1995, one Metabolite 5C-pregnan-3C-ol-20-one.” European abandoned. Journal of Pharmacology, 166:325–329 (1989). (51) Int. Cl." ..................................................... A61K 31/56 Lan, N. C., et al., “Neurocactive Steroid Actions at the 52 U.S. Cl. .......................... 514/182; 514/177; 514/178; GABA Receptor.” Hormones and Behavior; 28:537-544 514/179 (1994). 58 Field of Search ..................................... 514/182, 177, 514/178, 179 Primary Examiner Rebecca Cook Attorney, Agent, or Firm-Hamilton, Brook, Smith & 56) References Cited Reynolds, P.C. U.S. -
PSD-95 Binding Dynamically Regulates NLGN1 Trafficking and Function
PSD-95 binding dynamically regulates NLGN1 trafficking and function Jaehoon Jeonga, Saurabh Pandeya, Yan Lia, John D. Badger IIa, Wei Lua, and Katherine W. Rochea,1 aNational Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved May 3, 2019 (received for review December 20, 2018) PSD-95 is a scaffolding protein that regulates the synaptic localization necessary for maintaining presynaptic release probability (15). of many receptors, channels, and signaling proteins. The NLGN gene Meanwhile, synaptic targeting of NLGN1 is known to be in- family encodes single-pass transmembrane postsynaptic cell adhesion dependent of PSD-95, as PSD-95 is recruited to the plasma molecules that are important for synapse assembly and function. At membrane after NLGN1 (13, 16, 17). In addition, non-PDZ excitatory synapses, NLGN1 mediates transsynaptic binding with ligand-dependent NLGN1 and NLGN3 functions have been in- neurexin, a presynaptic cell adhesion molecule, and also binds to vestigated (18), suggesting a complicated physiological interplay PSD-95, although the relevance of the PSD-95 interaction is not clear. between NLGNs and PSD-95. We now show that disruption of the NLGN1 and PSD-95 interaction Posttranslational modifications have been reported for several decreases surface expression of NLGN1 in cultured neurons. Further- NLGN isoforms and are postulated to confer distinct properties (11, more, PKA phosphorylates NLGN1 on S839, near the PDZ ligand, and 12). For example, phosphorylation of the cytoplasmic region of dynamically regulates PSD-95 binding. A phosphomimetic mutation NLGN1 has recently emerged as a mechanism for isoform-specific of NLGN1 S839 significantly reduced PSD-95 binding. -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. U M I films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send U M I a complete manuscript and there are missing pages, these w ill be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact U M I directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9427799 Part 1: Design, synthesis and biological activities2-(4 of -isothiocyanatobenzyl)imidazoline analogues in rat and bovine tissues. -
Autism-Associated Mir-873 Regulates ARID1B, SHANK3 and NRXN2
Lu et al. Translational Psychiatry (2020) 10:418 https://doi.org/10.1038/s41398-020-01106-8 Translational Psychiatry ARTICLE Open Access Autism-associated miR-873 regulates ARID1B, SHANK3 and NRXN2 involved in neurodevelopment Jing Lu 1, Yan Zhu 1, Sarah Williams2, Michelle Watts 3,MaryA.Tonta1, Harold A. Coleman1, Helena C. Parkington1 and Charles Claudianos 1,4 Abstract Autism spectrum disorders (ASD) are highly heritable neurodevelopmental disorders with significant genetic heterogeneity. Noncoding microRNAs (miRNAs) are recognised as playing key roles in development of ASD albeit the function of these regulatory genes remains unclear. We previously conducted whole-exome sequencing of Australian families with ASD and identified four novel single nucleotide variations in mature miRNA sequences. A pull-down transcriptome analysis using transfected SH-SY5Y cells proposed a mechanistic model to examine changes in binding affinity associated with a unique mutation found in the conserved ‘seed’ region of miR-873-5p (rs777143952: T > A). Results suggested several ASD-risk genes were differentially targeted by wild-type and mutant miR-873 variants. In the current study, a dual-luciferase reporter assay confirmed miR-873 variants have a 20-30% inhibition/dysregulation effect on candidate autism risk genes ARID1B, SHANK3 and NRXN2 and also confirmed the affected expression with qPCR. In vitro mouse hippocampal neurons transfected with mutant miR-873 showed less morphological complexity and enhanced sodium currents and excitatory neurotransmission compared to cells transfected with wild-type miR- 873. A second in vitro study showed CRISPR/Cas9 miR-873 disrupted SH-SY5Y neuroblastoma cells acquired a neuronal-like morphology and increased expression of ASD important genes ARID1B, SHANK3, ADNP2, ANK2 and CHD8. -
Synaptic Modulators Nrxn1 and Nrxn3 Are Disregulated in a Disc1 Mouse
Letters to the Editor 585 National University of Ireland Galway, Galway, Ireland; 4Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; 5Center for Integrated Molecular Brain Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark and 6Department of Psychiatry, Laureate Institute for Brain Research, University of Oklahoma College of Medicine, Tulsa, OK, USA E-mail: [email protected] 7These senior authors contributed equally to this paper. References 1 Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M et al. Biological Psychiatry 2002; 51: 715–722. 2 Cannon DM, Ichise M, Rollis D, Klaver JM, Gandhi SK, Charney DS et al. Biol Psychiatry 2007; 15: 870–877. 3 Cannon DM, Ichise M, Fromm SJ, Nugent AC, Rollis D, Gandhi SK et al. Biol Psychiatry 2006; 60: 207–217. 4 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. American Journal of Human Genetics 2007; 81: 559–575. Figure 1 Map of t-values from voxel-wise analysis of 5 Shioe K, Ichimiya T, Suhara T, Takano A, Sudo Y, Yasuno F et al. Synapse 2003; 48: 184–188. rs6741892, overlaid on a sample axial magnetic resonance 6 Kalbitzer J, Frokjaer VG, Erritzoe D, Svarer C, Cumming P, imaging slice at the level of the medial thalamus (z = 6 mm). Nielsen FA et al. Neuroimage 2009; 45: 280–285. Bilaterally, T-allele carriers (n = 13) have greater serotonin- 7 Erritzoe D, Holst K, Frokjaer VG, Licht CL, Kalbitzer J, Nielsen FA transporter-binding potential than AA homozygotes (n = 42). -
Downregulation of Glial Genes Involved in Synaptic Function
RESEARCH ARTICLE Downregulation of glial genes involved in synaptic function mitigates Huntington’s disease pathogenesis Tarik Seref Onur1,2,3†, Andrew Laitman2,4,5†, He Zhao2, Ryan Keyho2, Hyemin Kim2, Jennifer Wang2, Megan Mair1,2,3, Huilan Wang6, Lifang Li1,2, Alma Perez2, Maria de Haro1,2, Ying-Wooi Wan2, Genevera Allen2,7, Boxun Lu6, Ismael Al-Ramahi1,2, Zhandong Liu2,4,5, Juan Botas1,2,3,4* 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States; 2Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, United States; 3Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States; 4Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States; 5Department of Pediatrics, Baylor College of Medicine, Houston, United States; 6State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; 7Departments of Electrical & Computer Engineering, Statistics and Computer Science, Rice University, Houston, United States Abstract Most research on neurodegenerative diseases has focused on neurons, yet glia help form and maintain the synapses whose loss is so prominent in these conditions. To investigate the contributions of glia to Huntington’s disease (HD), we profiled the gene expression alterations of *For correspondence: Drosophila expressing human mutant Huntingtin (mHTT) in either glia or neurons and compared [email protected] these changes to what is observed in HD human and HD mice striata. A large portion of conserved genes are concordantly dysregulated across the three species; we tested these genes in a high- †These authors contributed throughput behavioral assay and found that downregulation of genes involved in synapse assembly equally to this work mitigated pathogenesis and behavioral deficits. -
Scientists Home in on Autism Candidate Gene's Role in Brain
Spectrum | Autism Research News https://www.spectrumnews.org NEWS Scientists home in on autism candidate gene’s role in brain BY EMILY SINGER 26 NOVEMBER 2012 Friendly neighborhood: Cells lacking neuroligin-1 have a normal number of synapses (top), but lose them when their neighboring cells express the protein (bottom). Friendly neighborhood: Cells lacking neuroligin-1 have a normal number of synapses (top), but lose them when their neighboring cells express the protein (bottom). Four new studies of neuroligin-1 (NLGN1), a gene linked to autism, unravel its complex role in regulating synapses, the connections between neurons. Three of the studies, published 18 October in Neuron1,2,3, find that the NLGN1 protein is involved in both strengthening and weakening synapses. A fourth, published 8 November in Nature Neuroscience, shows that its role is highly dependent on the environment4. NLGN1 is a member of a family of four proteins known to be involved in synapse maturation5 and maintenance. The proteins were first linked to autism in 2003, when researchers discovered mutations in NLGN4 in two brothers with autism. A mutation in NLGN1 and a duplication of the gene have been found in two individuals with autism6. 1 / 4 Spectrum | Autism Research News https://www.spectrumnews.org Better understanding of the function of these proteins may help researchers understand how mutations in them contribute to autism risk. “A lot of people are interested in NLGN1, because it’s part of a gene family that comes up again and again in autism, but we really don’t understand what it does,” says Bernardo Sabatini, professor of molecular biology at Harvard Medical School and lead investigator of the Nature Neuroscience paper.