Functional Impact of Interacting Protein on Kainate Receptors: Necab1 and Neto Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Functional Impact of Interacting Protein on Kainate Receptors: Necab1 and Neto Proteins Instituto de Neurociencias de Alicante Universidad Miguel Hernandez Thesis manuscript for: PhD in Neuroscience Functional impact of interacting protein on kainate receptors: NeCaB1 and NeTo proteins. Jon Palacios Filardo Supervised by: Prof. Juan Lerma Alicante, 2014 Agradecimientos/Acknowledgments Agradecimientos/Acknowledgments Ahora que me encuentro escribiendo los agradecimientos, me doy cuenta que esta es posiblemente la única sección de la tesis que no será corregida. De manera que los escribiré tal como soy, tal vez un poco caótico. En primer lugar debo agradecer al profesor Juan Lerma, por la oportunidad que me brindó al permitirme realizar la tesis en su laboratorio. Más que un jefe ha sido un mentor en todos estos años, 6 exactamente, en los que a menudo al verme decía: “Jonny cogió su fusil”, y al final me entero que es el título de una película de cine… Pero aparte de un montón de anécdotas graciosas, lo que guardaré en la memoria es la figura de un mentor, que de ciencia todo lo sabía y le encantaba compartirlo. Sin duda uno no puede escribir un libro así (la tesis) sin un montón de gente alrededor que te enseña y ayuda. Como ya he dicho han sido 6 años conviviendo con unos maravillosos compañeros, desde julio de 2008 hasta presumiblemente 31 de junio de 2014. De cada uno de ellos he aprendido mucho; técnicamente toda la electrofisiología se la debo a Ana, con una paciencia infinita o casi infinita. La biología molecular me la enseñó Isa. La proteómica la aprendí del trío Esther-Ricado-Izabella. Joana y Ricardo me solventaron mis primeras dudas en el mundo de los kainatos. Y cada miembro del laboratorio aportó lo suyo. Como primer compañero de fatigas a Jose, luego vinieron Will (que por su culpa me puse gordo, debieron ser las cervezas…), Sergio (al que tuve oportunidad de enseñar parte de mis conocimientos de electrofisiología, pero del cual también he aprendido cosas) y Valeria (la nueva y divertida). También agradezco a Mónica, por su ayuda con las minis, midis, maxis y aportando todo lo que podía. Como he dicho un equipo maravilloso. Lo único que lamento es que con un equipo tan internacional no haya aprendido más idiomas. Pero no todo el tiempo ha sido de tesis, han sido 6 años y las personas que me conocieron cuando llegué a Alicante me comentan que he empezado mi transición de adolescente a hombre. La verdad es que cuando llegué todavía tenía la mentalidad un poco de niño y como se dice, “uno es uno mismo y sus circunstancias”, por ello quería agradecer a todas las personas que hicieron posible todas las circunstancias y evolución que me han llevado hasta aquí. Me llevo muy buenos momentos con muchas personas, y como no quisiera i Agradecimientos/Acknowledgments olvidarme de nadie (porque eso queda fatal), solamente escribiré un, esta frase va por ti, y cada uno ya lo sabe. Mirando al pasado debo agradecer a todos mis educadores, por hacerme como soy, pero en especial a mi familia. A mis padres (aita y ama) por los valores inculcados y a Maialen (hermana), porque aunque siempre nos chinchamos nos queremos mucho. Y ya por fin, gracias mi chica, las palabras más emotivas para ella. Menos mal que las tardes de cortejo dieron sus frutos, porque sino cuando tiempo desaprovechado. Pero lo importante es que lo dieron y espero lo sigan dando. Gracias por aguantarme y comprenderme.Un beso. ii Table of contents Table of contents Agradecimientos/Acknowledgments .................................................................... i Table of contents ............................................................................................... iii Abbreviations and acronyms ............................................................................ vii Work communications ....................................................................................... xi Abstract/Resumen ........................................................................................... xiii I. Introduction ................................................................................................. 1 1. Glutamate receptors ................................................................................. 2 1.1. NMDA receptors .............................................................................. 4 1.2. AMPA receptors ............................................................................... 6 1.3. Kainate receptors ............................................................................. 8 1.3.1. Structure of kainate receptors ........................................................ 9 1.3.2. Pharmacoloy of kainate receptors ............................................... 12 1.3.3. Molecular determinant of kainate receptors cannel gating ......... 14 1.3.4. Allosteric regulation of kainate receptors ..................................... 16 1.3.5. Distribution of kainate receptors .................................................. 18 1.3.6. Interacting proteins with kainate receptors ................................. 19 1.3.6.1. Auxiliary proteins on kainate receptors .............................. 19 1.3.6.2. Transient interacting proteins with kainate receptors ......... 21 1.3.7. Physiological roles for kainate receptors .................................... 26 1.3.7.1. Role of kainate receptors during development ................... 26 1.3.7.2. Role of kainate receptors as mediators of synaptic transmission ........................................................................ 26 1.3.7.3. Role of kainate receptors modulating network excitability ........................................................................... 28 1.3.7.4. Role of kainate receptors modulating synaptic transmission ........................................................................ 28 1.3.8. Kainate receptors facing CNS disorders ..................................... 30 1.3.8.1. Neurological diseases ........................................................ 30 1.3.8.2. Psychiatric diseases .......................................................... 32 iii Table of contents II. Aim ............................................................................................................. 33 III. Material and methods ............................................................................... 37 1. Biological models.................................................................................. 39 2. CDNA constructs .................................................................................. 40 3. Transfections ....................................................................................... 40 4. Electroporations ................................................................................... 41 5. Protein analysis .................................................................................... 42 6. Pull-down experiments ........................................................................ 44 7. Protein immunoprecipitations .............................................................. 45 8. Protein biotinylation experiments ......................................................... 46 9. Immunocytochemistry .......................................................................... 47 10. Bimolecular fluorescence complementation ......................................... 47 11. Real time PCR ..................................................................................... 48 12. Electrophysiological recordings ............................................................ 49 13. Solutions and buffers ........................................................................... 51 IV. Results ................................................................................................. 55 Results I: NeCaB1 and GluK5 containing KARs ...................................... 57 1. Space and time localization of NeCaB1 and GluK5 ................................... 57 2. NeCaB1 interacts with GluK5 containing KARs .......................................... 58 3. Mapping NeCaB1 interaction on GluK5 C-terminal domain .................... 60 4. Ca2+ modulates NeCaB1 and GluK5 interaction ......................................... 62 5. Functional impact of NeCaB1 on GluK1/5 KARs ........................................ 64 6. NeCaB1 increases GluK5 surface expression .............................................. 65 7. Trafficking and affinity modifications by NeCaB1 ........................................ 68 8. NeCaB1 modulates trafficking and affinity of GluK2/5 KARs .................. 71 9. The modulation of GluK2/5 KARs affinity by NeCaB1 is rapid ................ 74 10. Synaptic localization of NeCaB1 ...................................................................... 75 11. Discussion ................................................................................................................ 76 iv Table of contents Results II: Similarities and dissimilarities of KARs tethered to Neto proteins. ........................................................................................................................... 85 1. Neto proteins differentially express during development .......................... 85 2. Neto1 and Neto2 differentially modulate KAR gating ................................ 86 3. Neto proteins increase membrane KARs ...................................................... 88 4. Neto proteins increase affinity of KARs .......................................................... 90 5. Neto proteins alter desensitization recovery rate of KARs ....................... 90 6. Neto proteins
Recommended publications
  • Synthesis of Conformationally Constrained Glutamate Analogues and Their Preliminary Evaluation As Glutamate Transport Inhibitors
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2002 Synthesis of conformationally constrained glutamate analogues and their preliminary evaluation as glutamate transport inhibitors Travis Taylor Denton The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Denton, Travis Taylor, "Synthesis of conformationally constrained glutamate analogues and their preliminary evaluation as glutamate transport inhibitors" (2002). Graduate Student Theses, Dissertations, & Professional Papers. 9450. https://scholarworks.umt.edu/etd/9450 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • Glycine Activated Ion Channel Subunits Encoded by Ctenophore
    Glycine activated ion channel subunits encoded by PNAS PLUS ctenophore glutamate receptor genes Robert Albersteina, Richard Greya, Austin Zimmeta, David K. Simmonsb, and Mark L. Mayera,1 aLaboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and bThe Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 Edited by Christopher Miller, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, and approved September 2, 2015 (received for review July 13, 2015) Recent genome projects for ctenophores have revealed the subunits and glutamate to GluN2 subunits for activation of ion presence of numerous ionotropic glutamate receptors (iGluRs) in channel gating (12, 14–17), as well as depolarization to relieve + Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest ion channel block by extracellular Mg2 (18, 19). The initial metazoan ancestors. Sequence alignments and phylogenetic analy- annotation of the M. leidyi genome identified 16 candidate iGluR sis show that these form a distinct clade from the well-characterized genes (4), whereas in the draft genome of P. bachei, 14 iGluRs AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. were annotated as kainate-like receptors (5). In view of growing Although annotated as glutamate and kainate receptors, crystal interest in the molecular evolution of ion channels and receptors, structures of the ML032222a and PbiGluR3 ligand-binding domains and the pivotal role that ctenophores play in our current un- (LBDs) reveal endogenous glycine in the binding pocket, whereas derstanding of nervous system development (20), we initiated a ligand-binding assays show that glycine binds with nanomolar af- structural and functional characterization of glutamate receptors finity; biochemical assays and structural analysis establish that glu- expressed in both species.
    [Show full text]
  • Download Product Insert (PDF)
    Product Information CNQX Item No. 14618 CAS Registry No.: 115066-14-3 Formal Name: 1,2,3,4-tetrahydro-7-nitro-2,3-dioxo-6- quinoxalinecarbonitrile H Synonyms: 6-cyano-7-Nitroquinoxaline-2,3-dione, NC N O FG 9065 MF: C9H4N4O4 FW: 232.2 O O N N Purity: ≥98% 2 Stability: ≥2 years at -20°C H Supplied as: A crystalline solid λ UV/Vis.: max: 217, 275, 315 nm Laboratory Procedures For long term storage, we suggest that CNQX be stored as supplied at -20°C. It should be stable for at least two years. CNQX is supplied as a crystalline solid. A stock solution may be made by dissolving the CNQX in the solvent of choice. CNQX is soluble in organic solvents such as DMSO and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of CNQX in these solvents is approximately 5 and 12 mg/ml, respectively. CNQX is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, CNQX should first be dissolved in DMF and then diluted with the aqueous buffer of choice. CNQX has a solubility of approximately 0.5 mg/ml in a 1:1 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. CNQX is a competitive, non-NMDA glutamate receptor antagonist (IC50s = 0.3 and 1.5 μM for AMPA and kainate 1,2 receptors, respectively, versus IC50 = 25 μM for NMDA receptors). This compound has been used to specifically target AMPA and kainate receptor responses and thus differentiate from that of NMDA receptors.
    [Show full text]
  • An Investigation Into Pro-Apoptotic Targets in Experimental Glaucoma and the Neuroprotective Effects of Ginkgo Biloba in Retinal Ganglion Cells
    An investigation into pro-apoptotic targets in experimental glaucoma and the neuroprotective effects of Ginkgo biloba in retinal ganglion cells Abeir Baltmr MB ChB, FRCS (Glasg) A thesis submitted to University College London for the degree of Doctor of Medicine (Research) 2012 Glaucoma and Retinal Neurodegeneration Research Group Visual Neuroscience Institute of Ophthalmology 1 Declaration I, Abeir Baltmr, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abeir Baltmr 2 Abstract Ginkgo biloba has been advocated as a neuroprotective agent for several years in glaucoma. In this study, immunohistochemistry was used to identify known potential molecular targets of Ginkgo biloba related to retinal ganglion cell (RGC) apoptosis in experimental glaucoma, including amyloid precursor protein (APP), Aß, cytochrome c, caspase-3 and tumor necrosis factor receptor-1 (TNF-R1). Furthermore, using apoptotic inducers related to mechanisms implicated in glaucoma, namely Dimethyl sulphoxide (DMSO), ultraviolet C (UVC) and Sodium Azide (NaN3), the effects of the terpenoid fraction of Ginkgo biloba (Ginkgolide A, Ginkgolide B and Bilobalide) were investigated separately in cultured retinal ganglion cells (RGC-5). Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and morphological analysis of DMSO treated RGC-5 was performed using Hoechst 33342 stain. Immunohistochemistry showed a strong inverse correlation between Aß and APP in ocular hypertension (OHT) animals, with APP and Aß accumulation peaking at 1 and 12 weeks after intraocular pressure (IOP) elevation respectively. Cytochrome c and TNF-R1 expression peaked at 3 weeks, and active caspase 3 activity at 12 weeks after IOP elevation.
    [Show full text]
  • Synthesis and Biological Evaluation
    Margarida Leonor Florindo Espadinha Licenciatura em Química Aplicada Enantiopure bicyclic lactams: synthesis and biological evaluation Dissertação para obtenção do Grau de Mestre em Química Bioorgânica Orientador: Prof. Doutora Maria M. M. Santos, FF-UL Elemento de Ligação: Prof. Doutora Paula Sério Branco, FCT-UNL Presidente: Prof. Doutora Paula Sério Branco, FCT-UNL Arguente: Prof. Doutor Vasco Bonifácio, IST-CQFM Vogal: Prof. Doutora Maria M. M. Santos, FF-UL Outubro 2015 i LOMBADA biological evaluation biological dinha synthesis and and synthesis : Margarida Espa Margarida lactams bicyclic Enantiopure ii 2015 Margarida Leonor Florindo Espadinha Licenciatura em Química Aplicada Enantiopure bicyclic lactams: synthesis and biological evaluation Dissertação para obtenção do Grau de Mestre em Química Bioorgânica Orientador: Prof. Doutora Maria M. M. Santos, FF-UL Elemento de Ligação: Prof. Doutora Paula Sério Branco, FCT Presidente: Prof. Doutora Paula Sério Branco, FCT-UNL Arguente: Doutor Vasco Bonifácio, IST-CQFM Vogal: Prof. Doutora Maria M. M. Santos, FF-UL Outubro 2015 iii Enantiopure bicyclic lactams: synthesis and biological evaluation Margarida Leonor Florindo Espadinha, Copyright A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por outro qualquer meio conhecido ou que venha a ser inventado e de divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. iv Acknowledgements I would like to thank Professor Dr. Maria M.
    [Show full text]
  • Regulation of Extracellular Arginine Levels in the Hippocampus in Vivo
    Regulation of Extracellular Arginine Levels in the Hippocampus In Vivo by Joanne Watts B.Sc. (Hons) r Thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science, University of London The School of Pharmacy University of London ProQuest Number: 10105113 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10105113 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Nitric oxide (NO) has emerged as an ubiquitous signaling molecule in the central nervous system (CNS). NO is synthesised from molecular oxygen and the amino acid L-arginine (L- ARG) by the enzyme NO synthase (NOS), and the availability of L-ARG has been implicated as the limiting factor for NOS activity. Previous studies have indicated that L- ARG is localised in astrocytes in vitro and that the in vitro activation of non-N-methyl-D- aspartate (NMDA) receptors, as well as the presence of peroxynitrite (ONOO ), led to the release of L-ARG. Microdialysis was therefore used in this study to investigate whether this held true in vivo.
    [Show full text]
  • Interplay Between Gating and Block of Ligand-Gated Ion Channels
    brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes.
    [Show full text]
  • Poster Abstracts
    POSTER ABSTRACTS Society of Toxicology (MASOT) www.masot.org Fall 2015 Scientific Meeting October 13th, 2015 Abstract 01 Tracking Inflammatory Macrophage Accumulation in the Lung during Ozone- induced Lung Injury in Mice M Francis, M Mandal, C. Sun, H Choi, JD Laskin, DL Laskin Rutgers University, Piscataway, NJ Ozone induced lung injury is associated with an accumulation of pro- and antiinflammatory macrophages (MP) in the lung which have been implicated in tissue injury and repair. In these studies, we used in vivo tracking techniques to investigate the origin of cell. Initially we generated bone marrow (BM) chimeric mice by adoptive transfer of BM cells from GFP+ mice into irradiated C57BL/6 mice. After 4 weeks, mice were exposed to air or ozone (0.8 ppm, 3 h). Macrophages were isolated from lungs 24- 72 h later, stained with fluorescent labeled antibodies, and analyzed by flow cytometry. Approximately 98% of BM cells were found to be GFP+ while only 5% were GFP+ in control lungs. Ozone exposure resulted in a marked increase in infiltrating mature GFP+CD11b+F4/80+ MP into the lung. Two populations, Ly6CHi proinflammatory and Ly6CLo antiinflammatory were identified. Proinflammatory GFP+Ly6CHi MP increased rapidly after ozone and remained elevated, increases in antiinflammatory GFP+Ly6CLo were transient. To assess potential mechanisms mediating the accumulation of these MP subpopulations in the lung, we used mice lacking Ccr2, a chemokine receptor involved in proinflammatory MP trafficking. Loss of Ccr2 resulted in decreased numbers of infiltrating CD11b+ MP in the lung. This was due to a selective reduction in proinflammatory Ly6CHi MP.
    [Show full text]
  • Cellular Trafficking of Nicotinic Acetylcholine Receptors
    npg Acta Pharmacol Sin 2009 Jun; 30 (6): 656–662 Review Cellular trafficking of nicotinic acetylcholine receptors Paul A ST JOHN* Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson, AZ 85724, USA Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular loca- tion and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs. Keywords: membrane traffic; protein traffic; biosynthesis; endocytosis; endoplasmic reticulum-associated degradation Acta Pharmacologica Sinica (2009) 30: 656–662; doi: 10.1038/aps.2009.76 Introduction ways, but two particular perturbations have been especially well studied and exert their effects at least in part by altering Nicotinic acetylcholine receptors (nAChRs) mediate the trafficking of nAChRs: 1) denervation changes the total synaptic transmission in the CNS, in autonomic ganglia, and number, the distribution, and the turnover rate of nAChRs in at neuromuscular junctions and other peripheral synapses. skeletal muscle; 2) prolonged exposure to nicotine increases The functional properties of these synapses differ, but in each the total number of nAChRs in neurons. Several of the stud- case, properly functional signaling requires cellular control ies reviewed here addressed the mechanisms by which these of the number, type, and location of nAChRs. Trafficking treatments alter nAChR trafficking. Other authors in this of nAChRs – the movement of nAChRs between compart- special issue will address other aspects of the effects of nico- ments of a cell, including the cell's biosynthetic and degrada- tine on nAChRs.
    [Show full text]
  • 1750.Full.Pdf
    1750 • The Journal of Neuroscience, February 3, 2010 • 30(5):1750–1759 Development/Plasticity/Repair In the Developing Rat Hippocampus, Endogenous Activation of Presynaptic Kainate Receptors Reduces GABA Release from Mossy Fiber Terminals Maddalena D. Caiati,* Sudhir Sivakumaran,* and Enrico Cherubini Neuroscience Programme, International School for Advanced Studies, 34014 Trieste, Italy Presynaptic kainate receptors regulate synaptic transmission in several brain areas but are not known to have this action at immature mossy fiber (MF) terminals, which during the first week of postnatal life release GABA, which exerts into targeted cells a depolarizing and excitatory action. Here, we report that, during the first week of postnatal life, endogenous activation of GluK1 receptors by glutamate present in the extracellular space severely depresses MF-mediated GABAergic currents [GABAA-mediated postsynaptic currents (GPSCs)]. Activation of GluK1 receptors was prevented by treating the slices with enzymatic glutamate scavengers that enhanced the clearance of glutamate from the extracellular space. The depressant effect of GluK1 on MF-GPSCs was mediated by a metabotropic process sensitive to pertussis toxin. In the presence of U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H- pyrrole-2,5-dione), a selective inhibitor of phospholipase C, along the transduction pathway downstream to G-protein, GluK1 activation increased the probability of GABA release, thus unveiling the ionotropic action of this receptor. In line with this type of action, we found that GluK1 enhanced MF excitability by directly depolarizing MF terminals via calcium-permeable cation channels. Furthermore, GluK1 dynamically regulated the direction of spike time-dependent plasticity occurring by pairing MF stimulation with postsynaptic spiking and switched spike time-dependent potentiation into depression.
    [Show full text]
  • Qt267353tc Nosplash 6C08d1b
    Copyright 2011 by Leslie Ann Cruz ii In Memoriam Andrew Braisted (1963-2003) Warren DeLano (1972-2009) Two of the best scientists that I had the opportunity work with at Sunesis Pharmaceuticals. So much talent. Gone too soon… iii Dedication To my husband, George, and my son, Thomas My two most favorite men. To the grandfather I never had: Dr. David T. Petty, my life-long mentor To My Family and Friends who have supported and encouraged me throughout the years: Mom, Jim, Dad, Mikey, Maria, Lyla Carolyn, Bob, Melissa, Rob, LeeAnn, Graciela, James David, Janell, Lori, Becky, Judy, Alex, Gigi Daniel, Astrid, Dave, Scott, Joice, Kwasi, Marcus Dan and Monya Jeanne and Bruce iv Acknowledgments The saying goes, “It takes a village to raise a child”. It also takes a village to raise a scientist. Thank You to All My Teachers and Mentors With Special Thanks To: St. Benedict's Elementary School Ilene Hopkins Memorial Jr. High School Timothy Sandow Thornton Fractional South High School Richard Powell and Ann Rice The University of Chicago Viresh Rawal Argonne National Laboratory John Hryn v MediChem Research Raghu Samy, Stuart Feinberg, Shankar Saha, Dimitry Kolton Sunesis Pharmaceuticals Andrew Braisted, Dan Erlanson, Jeanne Hardy, Doug Cary, Brian Cunningham, Brian Raimundo, Molly He, Michelle Arkin, Darin Allen, Warren DeLano, Jim Wells University of California, San Francisco My Adviser: Robert Fletterick, My Dissertation Committee: Holly Ingraham, Jack Taunton, My Orals Committee: Pam England, Jim Wells, Lily Jan, Kevan Shokat Chris Olson, Charly Craik, Tom Scanlan, Kip Guy, Sue Miller, Dave Agard, Bob Stroud, David Julius, Roger Nicoll, Maia Vinogradova, Fumiaki Yumoto, Phuong Nguyen, Sam Pfaff, Eric Slivka, Jeremey Wilbur, Cindy Benod, Kris Kuchenbecker, Peter Huang, Elena Sablin, Ulrike Boettcher, Kristin Krukenburg, James Kraemer, Mariano Tabios, Rebeca Choy Collaborators Marc Cox, Eva Estébanez-Perpiñá, Paul Webb, John Baxter, Stephen Mayo vi Preface My dissertation is comprised of the two projects I worked on during my graduate career.
    [Show full text]