Functional Kainate-Selective Glutamate Receptors in Cultured Hippocampal Neurons (Excitatory Amino Acid Receptors/Hippocampus) JUAN LERMA*, ANA V

Total Page:16

File Type:pdf, Size:1020Kb

Functional Kainate-Selective Glutamate Receptors in Cultured Hippocampal Neurons (Excitatory Amino Acid Receptors/Hippocampus) JUAN LERMA*, ANA V Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11688-11692, December 1993 Neurobiology Functional kainate-selective glutamate receptors in cultured hippocampal neurons (excitatory amino acid receptors/hippocampus) JUAN LERMA*, ANA V. PATERNAIN, JosE R. NARANJO, AND BRITT MELLSTR6M Departamento de Plasticidad Neural, Instituto Cajal, Consejo Superior de Investigaciones Cientfficas, Avenida Doctor Arce 37, 28002-Madrid, Spain Communicated by Michael V. L. Bennett, September 15, 1993 ABSTRACT Glutamate mediates fast synaptic transmis- experiments, the regional distribution of high-affinity sion at the majority of excitatory synapses throughout the [3H]kainate binding sites does not match the AMPA receptor central nervous system by interacting with different types of distribution but corresponds well to the brain areas with high receptor channels. Cloning of glutamate receptors has pro- susceptibility to the neurotoxic actions of kainate (e.g., vided evidence for the existence of several structurally related hippocampal CA3 field) (13). However, patch-clamp record- subunit families, each composed of several members. It has ings from adult hippocampal neurons have revealed that been proposed that KA1 and KA2 and GluR-5, GluR-6, and native glutamate receptors are similar to the AMPA-type GluR-7 families represent subunit classes of high-affinity kain- recombinant glutamate receptors expressed from cDNA ate receptors and that in vivo different kainate receptor sub- clones but have failed so far to detect receptor channels ofthe types might be constructed from these subunits in heteromeric kainate type (14, 15). The only apparently high-affinity kain- assembly. However, despite some indications from autoradio- ate receptor channels have been found in the peripheral graphic studies and binding data in brain membranes, no nervous system (16, 17), although they are also activated by functional pure kainate receptors have so far been detected in AMPA. brain cells. We have found that early after culturing, a high In the present study, carried out with cultured hippocampal percentage of rat hippocampal neurons express functional, cells, kainate was found to activate a fully desensitizing kainate-selective glutamate receptors. These kainate receptors inward current in a subset of neurons which could not be show pronounced desensitization with fast onset and very slow activated or cross-desensitized by AMPA. Functional prop- recovery and are also activated by quisqualate and domoate, erties of responses selectively activated by kainate match but not by a-amino-3-hydroxy-5-methylisoxazole-4-propion- those reported for GluR-6 receptors formed in exogenous ate. Our results provide evidence for the existence offunctional expression systems. glutamate receptors ofthe kainate type in nerve cells, which are likely to be native homomeric GluR-6 receptors. MATERIALS AND METHODS Glutamate receptors mediate transmission at the majority of Cells were mechanically dissociated from hippocampi of fast excitatory synapses in the vertebrate central nervous embryonic day 18 (E18) (unless otherwise stated) rat embryos system (1, 2). Different types of glutamate receptors coexist after treatment with trypsin (type I, Sigma) at 0.12 mg/ml for in the same synaptic contact, and they have been classified 15 min at 37°C and were seeded onto 35-mm Petri dishes from a pharmacological point of view as of the N-methyl-D- previously coated with poly(D-lysine) (5 mg/ml) and laminin aspartate (NMDA) type and of non-NMDA type (2, 3). The (4 gg/ml). Cells were incubated in Dulbecco's modified so-called non-NMDA receptors include a-amino-3-hydroxy- Eagle's medium supplemented with transferrin (0.1 mg/ml), 5-methylisoxazole-4-propionate (AMPA) receptors, which insulin (5 ,ug/ml), putrescine (100 ,uM), progesterone (20 nM), were initially characterized by rapid activation kinetics and SeO2 (30 nM), ovalbumin (0.1%), glucose (3.3 mM), sodium pyruvate (1 mM), glutamine (4 mM), and antibiotics in a fast desensitization, and kainate receptors, which were dif- humidified incubator at 37°C and 5% CO2. ferentiated from AMPA receptors in that they were nonde- Electrophysiological experiments were carried out from 4 sensitizing (e.g., ref. 1). However, molecular biology studies hr up to 17 days after plating. Membrane currents were have provided new insight into the functional and structural recorded in the whole-cell configuration of the patch-clamp diversity of NMDA and non-NMDA glutamate receptor technique (18) by using a List EPC-7 amplifier. Cells were channels (see ref. 4). These studies have indicated that all rapidly perfused by a fast perfusion system (19). Series glutamate receptor channels may be assembled from struc- resistance during whole-cell recording was 8-20 Mfl. A turally homologous subunits that can be grouped into families 100-pA response would produce a voltage error of0.8-2 mV. according to sequence characteristics. On the basis of ligand As series resistance compensation (60-70%) did not improve affinity, the GluR-A to -D (GluR-1 to -4) subunits are con- notably the response amplitude or speed, it was not routinely stituents of AMPA receptor channels (5-8), whereas the used. Currents were filtered at 1 kHz and acquired at a GluR-5, GluR-6, GluR-7, and KA subunits form recombinant sampling rate of 1-2 kHz into a personal computer for receptors with high affinity for kainate (9-11). However, analysis and display purposes. The external solution was 165 kainate gates AMPA receptors and AMPA can activate mM NaCl/2.5 mM KCl/0.5 mM CaCl2/20 mM glucose/10 receptors formed by particular combinations of the high- mM Hepes, pH 7.5. Mg2+ was omitted to prevent block of affinity kainate receptor subunits (4). Thus, the functional NMDA receptor channels. In high-Ca2+ solutions, Ca2+ distinction between AMPA and kainate receptors is unclear substituted for Na+. To the re- and the existence of pure kainate or AMPA receptors in the keep osmolarity constant, brain has been questioned (10, 12). In autoradiographic Abbreviations: NMDA, N-methyl-D-aspartate; AMPA, a-amino-3- hydroxy-5-methylisoxazole-4-propionate; CNQX, 6-cyano-7- The publication costs of this article were defrayed in part by page charge nitroquinoxaline-2,3-dione; En, embryonic day n; Pn, postnatal day payment. This article must therefore be hereby marked "advertisement" n. in accordance with 18 U.S.C. §1734 solely to indicate this fact. *To whom reprint requests should be addressed. Downloaded by guest on September 25, 2021 11688 Neurobiology: Lerma et al. Proc. Natl. Acad. Sci. USA 90 (1993) 11689 maining Na+ was replaced by N-methyl-D-glucamine. Pi- potent neurotoxin domoic acid (40 AM) induced a partially pettes were filled with 130 mM CsCH3SO3/20 mM CsCl/0.5 desensitizing response, the deactivation of which was very mM CaCl2/2 mM MgCl2/10 mM EGTA/10 mM Hepes, pH slow upon domoate washout (single exponential decay time 7.2. constant of 715 ± 98 ms, n = 4). Responses to domoate were NMDA and kainate were purchased from Sigma. Quis- also cross-desensitized by the previous application of kain- qualate, AMPA and 6-cyano-7-nitroquinoxaline-2,3-dione ate. In some cells, perfusion of NMDA plus glycine evoked (CNQX) were from Tocris Neuramin (Bristol, U.K.). Do- small inward currents which, as in the case illustrated in the moic acid was generously provided by A. Novelli (University figure, commonly consisted of a few 50-pS channel openings of Oviedo, Spain). NS-102 was a gift from T. Drejer (Neu- which could be observed as single steps. The onset of rosearch, Glostrup, Denmark). desensitization of kainate-activated currents in most cases followed a single exponential decay with a time constant of RESULTS 19.3 ± 0.9 ms (300 ,uM kainate, n = 42) (Fig. 1B). In some In 108 of 356 cells studied (30%), AMPA (500 i&M) failed to cells the decaying phase was better fitted by the sum of two induce any response. In these cells a fast desensitizing inward exponentials, the fast component being predominant (time current was observed upon rapid kainate perfusion (Fig. 1A), constants of 17.1 ± 1.5 and 146 ± 17.2 ms, with relative and glutamate (300 ,uM) and quisqualate (100 ,uM) induced amplitudes of 58% and 42%, respectively, n = 8). Recovery responses with similar shapes. Responses induced by gluta- from the desensitized state was very slow (Fig. 1C). Full mate and quisqualate were cross-desensitized by the previ- recovery of kainate-induced peak current took about 40 sec, ous application of kainate, and kainate induced no response indicating that kainate-selective receptors recover from de- after glutamate or quisqualate perfusion (data not shown), sensitization considerably more slowly than NMDA or indicating that all agonists were able to activate and totally AMPA receptors. desensitize the same population ofreceptors. In contrast, the The shape of the peak current-voltage relationship re- vealed strong inward rectification (Fig. 2A), a phenomenon A observed in some homo- and heteromeric assemblies of Kainate Domoate AMPA receptors as well as in recombinant glutamate recep- 20 tors insensitive to AMPA (4, 10, 20). Since inward rectifica- IpA tion and Ca2+ permeability are two phenomena linked to the 400 Ms presence of a glutamine in the Q/R site of the second transmembrane domain of non-NMDA glutamate receptor subunits (21-23), we measured peak currents induced by fast Glutamate Quisqualate application ofkainate when Ca2+ was the only charge carrier. *I" AeP okh If these channels were equally permeable to Ca2+ and Cs+, a substantial inward current should be expected at -80 mV NMDA + GLY AMPA in a high-Ca2+ (50 mM) solution, since the reversal potential for the induced current would be about -10 mV. No inward |¶1~IPA 20 current was detected under these circumstances in the cells 400 ms tested (n = 6) (Fig. 2B), suggesting that these kainate- selective receptors have a very low Ca2+ permeability.
Recommended publications
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • Glycine Activated Ion Channel Subunits Encoded by Ctenophore
    Glycine activated ion channel subunits encoded by PNAS PLUS ctenophore glutamate receptor genes Robert Albersteina, Richard Greya, Austin Zimmeta, David K. Simmonsb, and Mark L. Mayera,1 aLaboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and bThe Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 Edited by Christopher Miller, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, and approved September 2, 2015 (received for review July 13, 2015) Recent genome projects for ctenophores have revealed the subunits and glutamate to GluN2 subunits for activation of ion presence of numerous ionotropic glutamate receptors (iGluRs) in channel gating (12, 14–17), as well as depolarization to relieve + Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest ion channel block by extracellular Mg2 (18, 19). The initial metazoan ancestors. Sequence alignments and phylogenetic analy- annotation of the M. leidyi genome identified 16 candidate iGluR sis show that these form a distinct clade from the well-characterized genes (4), whereas in the draft genome of P. bachei, 14 iGluRs AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. were annotated as kainate-like receptors (5). In view of growing Although annotated as glutamate and kainate receptors, crystal interest in the molecular evolution of ion channels and receptors, structures of the ML032222a and PbiGluR3 ligand-binding domains and the pivotal role that ctenophores play in our current un- (LBDs) reveal endogenous glycine in the binding pocket, whereas derstanding of nervous system development (20), we initiated a ligand-binding assays show that glycine binds with nanomolar af- structural and functional characterization of glutamate receptors finity; biochemical assays and structural analysis establish that glu- expressed in both species.
    [Show full text]
  • Interplay Between Gating and Block of Ligand-Gated Ion Channels
    brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes.
    [Show full text]
  • (NMDA) Receptor Encephalitis Is an Autoimmune Seizures and Autonomic Dysfunction
    Nonprofit Organization U.S. Postage PAID Twin Cities, MN VOLUME 23, NUMBER 4 200 University Ave. E. Permit No. 5388 St. Paul, MN 55101 651-291-2848 ADDRESSwww.gillettechildrens.org SERVICE REQUESTED VOLUME 23, NUMBER 4 2014 A Pediatric Perspective focuses on specialized topics in pediatrics, orthopedics, neurology, neurosurgery and rehabilitation medicine. Diagnosing and Treating Anti- KEY INSIGHTS To subscribe to or unsubscribe from A Pediatric Perspective, please send an email to [email protected]. N-Methyl-D-Aspartate (NMDA) ■ Anti-NMDA receptor encephalitis Editor-in-Chief – Steven Koop, M.D. is a relatively common and treatable Editor – Ellen Shriner Receptor Encephalitis cause of encephalitis in pediatric Designers – Becky Wright, Kim Goodness patients. Photographers – Anna Bittner, Amanda Moen, M.D., pediatric neurologist Paul DeMarchi ■ Common symptoms include person- Copyright 2014. Gillette Children’s Specialty ality change, abnormal movements, Amanda Moen, M.D. Healthcare. All rights reserved. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is an autoimmune seizures and autonomic dysfunction. condition in which the body produces antibodies that act against receptors in ■ If these symptoms are present, an the brain, resulting in both neurologic and psychiatric symptoms. Common urgent child neurology evaluation is symptoms include personality change, psychosis, abnormal movements, indicated and an evaluation for anti- To make a referral, call 651-325-2200 or seizures and autonomic dysfunction. The antibodies associated with this NMDA receptor encephalitis should Pediatric neurologist Amanda Moen, M.D., treats children 855-325-2200 (toll-free). condition were first identified in 2005, and since then it has become recognized be initiated. who have epilepsy and other neurological conditions.
    [Show full text]
  • From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J
    REVIEW The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J. David Jentsch, Ph.D., and Robert H. Roth, Ph.D. Administration of noncompetitive NMDA/glutamate effects of these drugs are discussed, especially with regard to receptor antagonists, such as phencyclidine (PCP) and differing profiles following single-dose and long-term ketamine, to humans induces a broad range of exposure. The neurochemical effects of NMDA receptor schizophrenic-like symptomatology, findings that have antagonist administration are argued to support a contributed to a hypoglutamatergic hypothesis of neurobiological hypothesis of schizophrenia, which includes schizophrenia. Moreover, a history of experimental pathophysiology within several neurotransmitter systems, investigations of the effects of these drugs in animals manifested in behavioral pathology. Future directions for suggests that NMDA receptor antagonists may model some the application of NMDA receptor antagonist models of behavioral symptoms of schizophrenia in nonhuman schizophrenia to preclinical and pathophysiological research subjects. In this review, the usefulness of PCP are offered. [Neuropsychopharmacology 20:201–225, administration as a potential animal model of schizophrenia 1999] © 1999 American College of is considered. To support the contention that NMDA Neuropsychopharmacology. Published by Elsevier receptor antagonist administration represents a viable Science Inc. model of schizophrenia, the behavioral and neurobiological KEY WORDS: Ketamine; Phencyclidine; Psychotomimetic; widely from the administration of purportedly psychot- Memory; Catecholamine; Schizophrenia; Prefrontal cortex; omimetic drugs (Snyder 1988; Javitt and Zukin 1991; Cognition; Dopamine; Glutamate Jentsch et al. 1998a), to perinatal insults (Lipska et al. Biological psychiatric research has seen the develop- 1993; El-Khodor and Boksa 1997; Moore and Grace ment of many putative animal models of schizophrenia.
    [Show full text]
  • Cellular Trafficking of Nicotinic Acetylcholine Receptors
    npg Acta Pharmacol Sin 2009 Jun; 30 (6): 656–662 Review Cellular trafficking of nicotinic acetylcholine receptors Paul A ST JOHN* Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson, AZ 85724, USA Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular loca- tion and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs. Keywords: membrane traffic; protein traffic; biosynthesis; endocytosis; endoplasmic reticulum-associated degradation Acta Pharmacologica Sinica (2009) 30: 656–662; doi: 10.1038/aps.2009.76 Introduction ways, but two particular perturbations have been especially well studied and exert their effects at least in part by altering Nicotinic acetylcholine receptors (nAChRs) mediate the trafficking of nAChRs: 1) denervation changes the total synaptic transmission in the CNS, in autonomic ganglia, and number, the distribution, and the turnover rate of nAChRs in at neuromuscular junctions and other peripheral synapses. skeletal muscle; 2) prolonged exposure to nicotine increases The functional properties of these synapses differ, but in each the total number of nAChRs in neurons. Several of the stud- case, properly functional signaling requires cellular control ies reviewed here addressed the mechanisms by which these of the number, type, and location of nAChRs. Trafficking treatments alter nAChR trafficking. Other authors in this of nAChRs – the movement of nAChRs between compart- special issue will address other aspects of the effects of nico- ments of a cell, including the cell's biosynthetic and degrada- tine on nAChRs.
    [Show full text]
  • Kainate Receptors Depress Excitatory Synaptic Transmission at CA33CA1 Synapses in the Hippocampus Via a Direct Presynaptic Action
    The Journal of Neuroscience, May 1, 2001, 21(9):2958–2966 Kainate Receptors Depress Excitatory Synaptic Transmission at CA33CA1 Synapses in the Hippocampus via a Direct Presynaptic Action Matthew Frerking,1 Dietmar Schmitz,1 Qiang Zhou,1 Joshua Johansen,2 and Roger A. Nicoll1,2 Departments of 1Cellular and Molecular Pharmacology and 2Physiology, University of California, San Francisco, California 94143-0450 Kainate receptor activation depresses synaptic release of neu- excitation and subsequent release of a neuromodulator. Pre- rotransmitter at a number of synapses in the CNS. The mech- synaptic depolarization, achieved via increasing extracellular anism underlying this depression is controversial, and both K ϩ, caused a depression of the presynaptic fiber volley and an ionotropic and metabotropic mechanisms have been sug- increase in the frequency of miniature EPSCs. Neither effect gested. We report here that the AMPA/kainate receptor ago- was observed with DA, suggesting that DA does not depress nists domoate (DA) and kainate (KA) cause a presynaptic de- transmission via a presynaptic depolarization. However, the pression of glutamatergic transmission at CA33CA1 synapses effects of DA were abolished by the G-protein inhibitors in the hippocampus, which is not blocked by the AMPA recep- N-ethylmaleimide and pertussis toxin. These results suggest tor antagonist GYKI 53655 but is blocked by the AMPA/KA that KA receptor activation depresses synaptic transmission at receptor antagonist CNQX. Neither a blockade of interneuronal this synapse via a direct, presynaptic, metabotropic action. discharge nor antagonists of several neuromodulators affect Key words: domoate; kainate; metabotropic; presynaptic; the depression, suggesting that it is not the result of indirect hippocampus; CA1 Neurotransmitter receptors in the CNS can be separated into two use-dependent depression.
    [Show full text]
  • Neurochemical Mechanisms Underlying Alcohol Withdrawal
    Neurochemical Mechanisms Underlying Alcohol Withdrawal John Littleton, MD, Ph.D. More than 50 years ago, C.K. Himmelsbach first suggested that physiological mechanisms responsible for maintaining a stable state of equilibrium (i.e., homeostasis) in the patient’s body and brain are responsible for drug tolerance and the drug withdrawal syndrome. In the latter case, he suggested that the absence of the drug leaves these same homeostatic mechanisms exposed, leading to the withdrawal syndrome. This theory provides the framework for a majority of neurochemical investigations of the adaptations that occur in alcohol dependence and how these adaptations may precipitate withdrawal. This article examines the Himmelsbach theory and its application to alcohol withdrawal; reviews the animal models being used to study withdrawal; and looks at the postulated neuroadaptations in three systems—the gamma-aminobutyric acid (GABA) neurotransmitter system, the glutamate neurotransmitter system, and the calcium channel system that regulates various processes inside neurons. The role of these neuroadaptations in withdrawal and the clinical implications of this research also are considered. KEY WORDS: AOD withdrawal syndrome; neurochemistry; biochemical mechanism; AOD tolerance; brain; homeostasis; biological AOD dependence; biological AOD use; disorder theory; biological adaptation; animal model; GABA receptors; glutamate receptors; calcium channel; proteins; detoxification; brain damage; disease severity; AODD (alcohol and other drug dependence) relapse; literature review uring the past 25 years research- science models used to study with- of the reasons why advances in basic ers have made rapid progress drawal neurochemistry as well as a research have not yet been translated Din understanding the chemi- reluctance on the part of clinicians to into therapeutic gains and suggests cal activities that occur in the nervous consider new treatments.
    [Show full text]
  • Kainate Receptor-Mediated Depression of Glutamate Release
    Article Kainate Receptor‐Mediated Depression of Glutamate Release Involves Protein Kinase A in the Cerebellum Rafael Falcón‐Moya, Pilar Losada‐Ruiz and Antonio Rodríguez‐Moreno * Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, ES‐41013 Sevilla, Spain * Correspondence: [email protected]; Tel: +34‐95497‐7393 Received: 20 July 2019; Accepted: 23 August 2019; Published: 23 August 2019 Abstract: Kainate (KA) receptors (KAR) have important modulatory roles of synaptic transmission. In the cerebellum, the action mechanisms of KAR‐mediated glutamatergic depression are unknown. We studied these mechanisms by recording evoked excitatory postsynaptic currents (eEPSCs) from cerebellar slices using the whole‐cell configuration of the patch‐clamp technique. We observed that 3 μM KA decreased the amplitude of eEPSCs and increased the number of failures at the synapses established between parallel fibers (PF) and Purkinje neurons, and the effect was antagonized by NBQX under the condition where AMPA receptors were previously blocked. The inhibition of protein kinase A (PKA) suppressed the effect of KAR activation on eEPSC, and effect was not prevented by protein kinase C inhibitors. Furthermore, in the presence of Pertussis toxin, the depression of glutamate release mediated by KAR activation was prevented, invoking the participation of a Gi/o protein in this modulation. Finally, the KAR‐mediated depression of glutamate release was not prevented by blocking calcium‐permeable KARs or by treatments that affect calcium release from intracellular stores. We conclude that KARs present at these synapses mediate an inhibition of glutamate release through a mechanism that involves the activation of G‐protein and protein kinase A.
    [Show full text]
  • A Review of Glutamate Receptors I: Current Understanding of Their Biology
    J Toxicol Pathol 2008; 21: 25–51 Review A Review of Glutamate Receptors I: Current Understanding of Their Biology Colin G. Rousseaux1 1Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada Abstract: Seventy years ago it was discovered that glutamate is abundant in the brain and that it plays a central role in brain metabolism. However, it took the scientific community a long time to realize that glutamate also acts as a neurotransmitter. Glutamate is an amino acid and brain tissue contains as much as 5 – 15 mM glutamate per kg depending on the region, which is more than of any other amino acid. The main motivation for the ongoing research on glutamate is due to the role of glutamate in the signal transduction in the nervous systems of apparently all complex living organisms, including man. Glutamate is considered to be the major mediator of excitatory signals in the mammalian central nervous system and is involved in most aspects of normal brain function including cognition, memory and learning. In this review, the basic biology of the excitatory amino acids glutamate, glutamate receptors, GABA, and glycine will first be explored. In the second part of this review, the known pathophysiology and pathology will be described. (J Toxicol Pathol 2008; 21: 25–51) Key words: glutamate, glycine, GABA, glutamate receptors, ionotropic, metabotropic, NMDA, AMPA, review Introduction and Overview glycine), peptides (vasopressin, somatostatin, neurotensin, etc.), and monoamines (norepinephrine, dopamine and In the first decades of the 20th century, research into the serotonin) plus acetylcholine. chemical mediation of the “autonomous” (autonomic) Glutamatergic synaptic transmission in the mammalian nervous system (ANS) was an area that received much central nervous system (CNS) was slowly established over a research activity.
    [Show full text]
  • Molecular Lock Regulates Binding of Glycine to a Primitive NMDA Receptor
    Molecular lock regulates binding of glycine to a primitive NMDA receptor Alvin Yua, Robert Albersteina,b,1, Alecia Thomasb,2, Austin Zimmetb,3, Richard Greyb,4, Mark L. Mayerb,5, and Albert Y. Laua,5 aDepartment of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; and bLaboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 Edited by Benoît Roux, University of Chicago, Chicago, IL, and accepted by Editorial Board Member Susan G. Amara September 14, 2016 (received for review May 2, 2016) The earliest metazoan ancestors of humans include the cteno- closed-cleft conformation, perhaps stabilized by the interdomain phore Mnemiopsis leidyi. The genome of this comb jelly encodes salt bridge. Prior electrophysiological and crystallographic stud- homologs of vertebrate ionotropic glutamate receptors (iGluRs) ies on vertebrate AMPA and kainate subtype iGluRs revealed that are distantly related to glycine-activated NMDA receptors that the stability of the closed cleft conformation is determined and that bind glycine with unusually high affinity. Using ligand- not only by contacts of the LBD with the neurotransmitter ligand binding domain (LBD) mutants for electrophysiological analysis, but also by contacts formed between the upper and lower lobes we demonstrate that perturbing a ctenophore-specific interdo- of the clamshell assembly that occur only in the ligand-bound main Arg-Glu salt bridge that is notably absent from vertebrate closed-cleft conformation (15, 16). Comparison of crystal struc- AMPA, kainate, and NMDA iGluRs greatly increases the rate of tures of ctenophore iGluR LBDs with those of vertebrate recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine.
    [Show full text]
  • Microglial Glutathione and Glutamate: Regulation Mechanisms
    Microglial glutathione and glutamate: Regulation mechanisms Victoria Anne Honey Fry UCL Institute of Neurology A thesis submitted for the degree of Doctor of Philosophy (Ph.D.) 1 I, Victoria Fry, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Microglia, the immune cells of the central nervous system (CNS), are important in the protection of the CNS, but may be implicated in the pathogenesis of neuroinflammatory disease. Upon activation, microglia produce reactive oxygen and nitrogen species; intracellular antioxidants are therefore likely to be important in their self-defence. Here, it was confirmed that cultured microglia contain high levels of glutathione, the predominant intracellular antioxidant in mammalian cells. The activation of microglia with lipopolysaccharide (LPS) or LPS + interferon- was shown to affect their glutathione levels. GSH levels in primary microglia and those of the BV-2 cell line increased upon activation, whilst levels in N9 microglial cells decreased. - Microglial glutathione synthesis is dependent upon cystine uptake via the xc transporter, which exchanges cystine and glutamate. Glutamate is an excitatory neurotransmitter whose extracellular concentration is tightly regulated by excitatory amino acid transporters, as high levels cause toxicity to neurones and other CNS cell types through overstimulation of - glutamate receptors or by causing reversal of xc transporters. Following exposure to LPS, increased extracellular glutamate and increased levels of messenger ribonucleic acid - (mRNA) for xCT, the specific subunit of xc , were observed in BV-2 and primary microglial cells, suggesting upregulated GSH synthesis.
    [Show full text]