Microglial Glutathione and Glutamate: Regulation Mechanisms

Total Page:16

File Type:pdf, Size:1020Kb

Microglial Glutathione and Glutamate: Regulation Mechanisms Microglial glutathione and glutamate: Regulation mechanisms Victoria Anne Honey Fry UCL Institute of Neurology A thesis submitted for the degree of Doctor of Philosophy (Ph.D.) 1 I, Victoria Fry, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Microglia, the immune cells of the central nervous system (CNS), are important in the protection of the CNS, but may be implicated in the pathogenesis of neuroinflammatory disease. Upon activation, microglia produce reactive oxygen and nitrogen species; intracellular antioxidants are therefore likely to be important in their self-defence. Here, it was confirmed that cultured microglia contain high levels of glutathione, the predominant intracellular antioxidant in mammalian cells. The activation of microglia with lipopolysaccharide (LPS) or LPS + interferon- was shown to affect their glutathione levels. GSH levels in primary microglia and those of the BV-2 cell line increased upon activation, whilst levels in N9 microglial cells decreased. - Microglial glutathione synthesis is dependent upon cystine uptake via the xc transporter, which exchanges cystine and glutamate. Glutamate is an excitatory neurotransmitter whose extracellular concentration is tightly regulated by excitatory amino acid transporters, as high levels cause toxicity to neurones and other CNS cell types through overstimulation of - glutamate receptors or by causing reversal of xc transporters. Following exposure to LPS, increased extracellular glutamate and increased levels of messenger ribonucleic acid - (mRNA) for xCT, the specific subunit of xc , were observed in BV-2 and primary microglial cells, suggesting upregulated GSH synthesis. An activation-induced decrease in N9 GSH levels suggests that this cell line is more susceptible to oxidative damage, and may be less able to upregulate GSH synthesis. Albumin, to which microglia may be exposed following blood-brain barrier damage, increased iNOS expression, glutamate release, xCT mRNA levels and intracellular levels of GSH and ATP in BV-2 and primary microglia. Primary and BV-2 microglial conditioned medium contained low levels of GSH, suggesting that microglia may release GSH. Modulation of microglial metabotropic glutamate receptors (mGluRs) may alter microglial activation and neurotoxicity. Here, stimulation of the neuroprotective mGluR5 and group III mGluRs caused a decline in GSH levels in BV-2 and N9 microglia, respectively. In contrast mGluR1 stimulation may increase BV-2 GSH levels. The work presented in this thesis therefore extends current knowledge regarding microglial GSH and its regulation, and contributes to the understanding of microglial neurotoxicity and neuroprotection. 3 Table of contents List of tables.............................................................................................................. 10 List of figures............................................................................................................ 11 Acknowledgements .................................................................................................... 18 Abbreviations ............................................................................................................. 19 Chapter 1 - Introduction 1.1. The Central Nervous System .............................................................................. 26 1.1.1. Neurones ...................................................................................................... 26 1.1.2. Astrocytes ..................................................................................................... 27 1.1.3. Oligodendrocytes ......................................................................................... 28 1.1.4. Microglia ...................................................................................................... 28 1.1.5. The Blood-Brain Barrier .............................................................................. 29 1.2. Microglia ............................................................................................................. 31 1.2.1. Origin ........................................................................................................... 31 1.2.2. Morphology of microglia ............................................................................. 32 1.2.3. Microglial activation .................................................................................... 34 1.2.4. Microglia and the immune system ............................................................... 36 1.2.5. Expression and release profiles of activated microglia ................................ 37 1.2.6. Neurone-microglia interactions: neuroprotection and neurotoxicity ........... 41 1.2.7. Microglia in ageing, neuroinflammatory and neurodegenerative disease ... 42 1.3. Neuroinflammatory disease ................................................................................ 44 1.3.1. Multiple sclerosis ......................................................................................... 44 1.3.1.1. MS pathology and pathogenesis ........................................................... 45 1.3.1.2. Microglia in MS .................................................................................... 46 1.3.1.3. Albumin as an in vitro model of BBB damage in MS .......................... 50 1.3.2. Alzheimer‟s disease ..................................................................................... 51 1.3.2.1. Aβ and the amyloid cascade hypothesis ............................................... 51 1.3.2.2. Oxidative stress in AD .......................................................................... 53 1.3.2.3. Microglia in AD .................................................................................... 54 1.3.2.4. Treatment of AD ................................................................................... 59 1.4. Glutamate ............................................................................................................ 60 1.4.1. Glutamate receptors ..................................................................................... 61 4 1.4.1.1. Ionotropic glutamate receptors .............................................................. 61 1.4.1.2. Metabotropic glutamate receptors ......................................................... 64 1.4.2. Glutamate transporters ................................................................................. 76 1.4.2.1. Excitatory amino acid transporters ....................................................... 76 - 1.4.2.2. xc glutamate/cystine transporter system ............................................... 78 1.4.2.3. Microglial glutamate transporters ......................................................... 79 1.4.2.4. Glutamate transporters in AD and MS .................................................. 80 1.5. Glutathione .......................................................................................................... 83 1.5.1. Functions of glutathione ............................................................................... 83 1.5.2. Glutathione synthesis and consumption ....................................................... 84 1.5.3. Glutathione in the CNS ................................................................................ 85 1.5.4. Glutathione and related enzymes in ageing, AD and MS ............................ 88 1.5.5. Astrocytes release GSH................................................................................ 90 1.5.6. Microglial glutathione .................................................................................. 90 1.6. Aims .................................................................................................................... 94 Chapter 2 - Materials and methods 2.1 Materials ............................................................................................................... 97 2.1.1 Animals ......................................................................................................... 97 2.1.2 Reagents ........................................................................................................ 97 2.1.3 Consumables ................................................................................................. 98 2.2 Methods ................................................................................................................ 99 2.2.1 Cell culture .................................................................................................... 99 2.2.1.1 Culture of primary rat microglia ............................................................ 99 2.2.1.2. Microglial cell lines............................................................................. 103 2.2.2 Determination of intracellular reduced glutathione levels with reverse-phase HPLC ................................................................................................................... 105 2.2.2.1 Principle ............................................................................................... 105 2.2.2.2 Preparation of cells ............................................................................... 106 2.2.2.3 Measurement of reduced glutathione ................................................... 109 2.2.2.4 Measurement of oxidised and total glutathione ................................... 111 2.2.3 Determination of intracellular glutathione levels by
Recommended publications
  • Synthesis of Conformationally Constrained Glutamate Analogues and Their Preliminary Evaluation As Glutamate Transport Inhibitors
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2002 Synthesis of conformationally constrained glutamate analogues and their preliminary evaluation as glutamate transport inhibitors Travis Taylor Denton The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Denton, Travis Taylor, "Synthesis of conformationally constrained glutamate analogues and their preliminary evaluation as glutamate transport inhibitors" (2002). Graduate Student Theses, Dissertations, & Professional Papers. 9450. https://scholarworks.umt.edu/etd/9450 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • Physiological and Pharmacological Characteristics of Quisqualic Acid-Induced K؉-Current Response in the Ganglion Cells of Aplysia
    Japanese Journal of Physiology, 51, 511–521, 2001 Physiological and Pharmacological Characteristics of Quisqualic Acid-Induced K1-Current Response in the Ganglion Cells of Aplysia Shingo KIMURA, Satoshi KAWASAKI, Koichiro TAKASHIMA, and Kazuhiko SASAKI Department of Physiology and Advanced Medical Science Research Center, School of Medicine, Iwate Medical University, Morioka, 020–8505 Japan Abstract: The extracellular application of ei- the application of either kainate or AMPA, ago- ther quisqualic acid (QA) or Phe-Met-Arg-Phe- nists for non-NMDA receptors, produced no type NH2 (FMRFamide) induces an outward current in of response in the same neurons. The QA-in- identified neurons of Aplysia ganglion under volt- duced K1-current response was not depressed age clamp. The time course of the QA-induced at all by an intracellular injection of either gua- response is significantly slower than that induced nosine 59-O-(2-thiodiphosphate) (GDP-bS) or by FMRFamide. The reversal potential for both guanosine 59-O-(3-thiotriphosphate) (GTP-gS), responses was 292 mV and was shifted 17 mV but the FMRFamide-induced response was in a positive direction for a twofold increase in markedly blocked by both GDP-bS and GTP-gS the extracellular K1 concentration. The QA-in- in the same cell. Furthermore, the QA- and FMR- duced response was markedly depressed in the Famide-induced K1-current responses were both presence of Ba21, a blocker of inward rectifier decreased markedly when the temperature was K1-channel, whereas TEA, a Ca21-activated K1- lowered to 15°C, from 23°C. These results sug- 1 1 channel (BKCa) blocker, or 4-AP, a transient K gested that the QA-induced K -current response (A)-channel blocker, had no effect on the re- is produced by an activation of a novel type of sponse.
    [Show full text]
  • Download Product Insert (PDF)
    Product Information CNQX Item No. 14618 CAS Registry No.: 115066-14-3 Formal Name: 1,2,3,4-tetrahydro-7-nitro-2,3-dioxo-6- quinoxalinecarbonitrile H Synonyms: 6-cyano-7-Nitroquinoxaline-2,3-dione, NC N O FG 9065 MF: C9H4N4O4 FW: 232.2 O O N N Purity: ≥98% 2 Stability: ≥2 years at -20°C H Supplied as: A crystalline solid λ UV/Vis.: max: 217, 275, 315 nm Laboratory Procedures For long term storage, we suggest that CNQX be stored as supplied at -20°C. It should be stable for at least two years. CNQX is supplied as a crystalline solid. A stock solution may be made by dissolving the CNQX in the solvent of choice. CNQX is soluble in organic solvents such as DMSO and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of CNQX in these solvents is approximately 5 and 12 mg/ml, respectively. CNQX is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, CNQX should first be dissolved in DMF and then diluted with the aqueous buffer of choice. CNQX has a solubility of approximately 0.5 mg/ml in a 1:1 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. CNQX is a competitive, non-NMDA glutamate receptor antagonist (IC50s = 0.3 and 1.5 μM for AMPA and kainate 1,2 receptors, respectively, versus IC50 = 25 μM for NMDA receptors). This compound has been used to specifically target AMPA and kainate receptor responses and thus differentiate from that of NMDA receptors.
    [Show full text]
  • The G Protein-Coupled Glutamate Receptors As Novel Molecular Targets in Schizophrenia Treatment— a Narrative Review
    Journal of Clinical Medicine Review The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment— A Narrative Review Waldemar Kryszkowski 1 and Tomasz Boczek 2,* 1 General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland; [email protected] 2 Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland * Correspondence: [email protected] Abstract: Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology. Citation: Kryszkowski, W.; Boczek, T. The G Protein-Coupled Glutamate Keywords: schizophrenia; metabotropic glutamate receptors; positive allosteric modulators; negative Receptors as Novel Molecular Targets allosteric modulators; drug development; animal models of schizophrenia; clinical trials in Schizophrenia Treatment—A Narrative Review. J. Clin. Med. 2021, 10, 1475. https://doi.org/10.3390/ jcm10071475 1. Introduction Academic Editors: Andreas Reif, Schizophrenia is a common debilitating disease affecting about 0.3–1% of the human Blazej Misiak and Jerzy Samochowiec population worldwide [1].
    [Show full text]
  • Mechanistic Insights on the Reduction of Glutathione Disulfide by Protein Disulfide Isomerase
    Mechanistic insights on the reduction of glutathione disulfide by protein disulfide isomerase Rui P. P. Nevesa, Pedro Alexandrino Fernandesa, and Maria João Ramosa,1 aUnidade de Ciências Biomoleculares Aplicadas, Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal Edited by Donald G. Truhlar, University of Minnesota, Minneapolis, MN, and approved May 9, 2017 (received for review November 22, 2016) We explore the enzymatic mechanism of the reduction of glutathione of enzymes, which are responsible for the reduction and isomer- disulfide (GSSG) by the reduced a domain of human protein disulfide ization of disulfide bonds, through thiol-disulfide exchange. isomerase (hPDI) with atomistic resolution. We use classical molecular dynamics and hybrid quantum mechanics/molecular mechanics cal- Structure and Function of PDI culations at the mPW1N/6–311+G(2d,2p):FF99SB//mPW1N/6–31G(d): Human protein disulfide isomerase (hPDI) is a U-shaped enzyme FF99SB level. The reaction proceeds in two stages: (i) a thiol-disulfide with 508 residues. Its tertiary structure is composed of four exchange through nucleophilic attack of the Cys53-thiolate to the thioredoxin-like domains (a, b, b′,anda′) and a fifth tail-shaped c GSSG-disulfide followed by the deprotonation of Cys56-thiol by domain (Fig. 1) (14, 15). The maximum activity of hPDI is observed Glu47-carboxylate and (ii) a second thiol-disulfide exchange between when all domains of PDI contribute synergistically to its function (16). the Cys56-thiolate and the mixed disulfide intermediate formed in Similar to thioredoxin, the a and a′ domains have a catalytic the first step.
    [Show full text]
  • Switch to Tonic Discharge by Thyrotropin-Releasing Hormone
    Neuron Article Synchronized Network Oscillations in Rat Tuberoinfundibular Dopamine Neurons: Switch to Tonic Discharge by Thyrotropin-Releasing Hormone David J. Lyons,1,* Emilia Horjales-Araujo,1 and Christian Broberger1,* 1Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden *Correspondence: [email protected] (D.J.L.), [email protected] (C.B.) DOI 10.1016/j.neuron.2009.12.024 SUMMARY most common form of pituitary tumor (Burrow et al., 1981), and by the hyperprolactinaemia and sometimes galactorrhea that The pituitary hormone, prolactin, triggers lactation in is a side effect of antipsychotic drugs with DA antagonist prop- nursing mothers. Under nonlactating conditions, erties (Clemens et al., 1974; Meltzer and Fang, 1976). Yet, to prolactin secretion is suppressed by powerful inhibi- date, the cellular and network electrophysiological properties tion from hypothalamic tuberoinfundibular dopamine of the TIDA cell population have not been described. These (TIDA) neurons. Although firing pattern has been sug- factors are potentially fundamental features of prolactin regula- gested as integral to neuroendocrine control, the tion since discharge pattern may determine the functional output of neuroendocrine control of the anterior pituitary, as is observed electrical behavior of TIDA cells remains unknown. in the magnocellular system (Wakerley and Lincoln, 1973; Hatton We demonstrate that rat TIDA neurons discharge et al., 1983). Thus, the periodic bursting pattern in hypothalamic rhythmically in a robust 0.05 Hz oscillation. The oscil- gonadotropin-releasing hormone neurons is required for stimu- lation is phase locked between neurons, and while it lation of target gonadotrophs in the pituitary (Knobil, 1980). persists during chemical synaptic transmission When bursting is artificially replaced by continuous agonist stim- blockade, it is abolished by gap junction antagonists.
    [Show full text]
  • Interplay Between Gating and Block of Ligand-Gated Ion Channels
    brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes.
    [Show full text]
  • Poster Abstracts
    POSTER ABSTRACTS Society of Toxicology (MASOT) www.masot.org Fall 2015 Scientific Meeting October 13th, 2015 Abstract 01 Tracking Inflammatory Macrophage Accumulation in the Lung during Ozone- induced Lung Injury in Mice M Francis, M Mandal, C. Sun, H Choi, JD Laskin, DL Laskin Rutgers University, Piscataway, NJ Ozone induced lung injury is associated with an accumulation of pro- and antiinflammatory macrophages (MP) in the lung which have been implicated in tissue injury and repair. In these studies, we used in vivo tracking techniques to investigate the origin of cell. Initially we generated bone marrow (BM) chimeric mice by adoptive transfer of BM cells from GFP+ mice into irradiated C57BL/6 mice. After 4 weeks, mice were exposed to air or ozone (0.8 ppm, 3 h). Macrophages were isolated from lungs 24- 72 h later, stained with fluorescent labeled antibodies, and analyzed by flow cytometry. Approximately 98% of BM cells were found to be GFP+ while only 5% were GFP+ in control lungs. Ozone exposure resulted in a marked increase in infiltrating mature GFP+CD11b+F4/80+ MP into the lung. Two populations, Ly6CHi proinflammatory and Ly6CLo antiinflammatory were identified. Proinflammatory GFP+Ly6CHi MP increased rapidly after ozone and remained elevated, increases in antiinflammatory GFP+Ly6CLo were transient. To assess potential mechanisms mediating the accumulation of these MP subpopulations in the lung, we used mice lacking Ccr2, a chemokine receptor involved in proinflammatory MP trafficking. Loss of Ccr2 resulted in decreased numbers of infiltrating CD11b+ MP in the lung. This was due to a selective reduction in proinflammatory Ly6CHi MP.
    [Show full text]
  • NAC and Vitamin D Restore CNS Glutathione in Endotoxin-Sensitized Neonatal Hypoxic-Ischemic Rats
    antioxidants Article NAC and Vitamin D Restore CNS Glutathione in Endotoxin-Sensitized Neonatal Hypoxic-Ischemic Rats Lauren E. Adams 1,†, Hunter G. Moss 2,† , Danielle W. Lowe 3,† , Truman Brown 2, Donald B. Wiest 4, Bruce W. Hollis 1, Inderjit Singh 1 and Dorothea D. Jenkins 1,* 1 Department of Pediatrics, 10 McLellan Banks Dr, Medical University of South Carolina, Charleston, SC 29425, USA; [email protected] (L.E.A.); [email protected] (B.W.H.); [email protected] (I.S.) 2 Center for Biomedical Imaging, Department of Radiology, Medical University of South Carolina, 68 President St. Room 205, Charleston, SC 29425, USA; [email protected] (H.G.M.); [email protected] (T.B.) 3 Department of Psychiatry, Medical University of South Carolina, 67 Presidents St., MSC 861, Charleston, SC 29425, USA; [email protected] 4 Department of Pharmacy and Clinical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-843-792-2112 † Three first authors contributed equally to this work. Abstract: Therapeutic hypothermia does not improve outcomes in neonatal hypoxia ischemia (HI) complicated by perinatal infection, due to well-described, pre-existing oxidative stress and neuroin- flammation that shorten the therapeutic window. For effective neuroprotection post-injury, we must first define and then target CNS metabolomic changes immediately after endotoxin-sensitized HI (LPS-HI). We hypothesized that LPS-HI would acutely deplete reduced glutathione (GSH), indicating overwhelming oxidative stress in spite of hypothermia treatment in neonatal rats. Post-natal day 7 Citation: Adams, L.E.; Moss, H.G.; rats were randomized to sham ligation, or severe LPS-HI (0.5 mg/kg 4 h before right carotid artery Lowe, D.W.; Brown, T.; Wiest, D.B.; ligation, 90 min 8% O2), followed by hypothermia alone or with N-acetylcysteine (25 mg/kg) and Hollis, B.W.; Singh, I.; Jenkins, D.D.
    [Show full text]
  • Activation of Group I Metabotropic Glutamate Receptors Reduces Neuronal Apoptosis but Increases Necrotic Cell Death in Vitro
    Cell Death and Differentiation (2000) 7, 470 ± 476 ã 2000 Macmillan Publishers Ltd All rights reserved 1350-9047/00 $15.00 www.nature.com/cdd Activation of group I metabotropic glutamate receptors reduces neuronal apoptosis but increases necrotic cell death in vitro JW Allen1,2, SM Knoblach1,3 and AI Faden*,1,3,4 hydroxyphenylglycine; DHPG, dihydroxyphenylglycine; MK801, dizocilpine; LDH, lactate dehydrogenase; MCPG, -methyl-4- 1 Institute for Cognitive and Computational Sciences, Georgetown University carboxyphenylglycine; mGluR, metabotropic glutamate receptors; Medical Center, Washington, DC 20007, USA OGD, oxygen-glucose deprivation; TBI, traumatic brain injury 2 Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA 3 Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA Introduction 4 Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA Activation of both ionotropic and metabotropic glutamate * Corresponding author: AI Faden, EP-04 Research Building, 3970 Reservoir receptors has been implicated in the pathophysiology of Road, N.W. Washington, DC 20007, USA. Tel: (202) 687 0492; Fax: (202) 687 stroke and CNS trauma. It has been well established that 0617; E-mail: [email protected] blockade of ionotropic glutamate receptors provides neuro- protection in vitro and in vivo.1±5 Recent studies have suggested that metabotropic glutamate receptors (mGluR) Received 23.7.99; revised 19.1.00; accepted 7.2.00 are also activated following traumatic brain injury (TBI)6±9 or Edited by FD Miller cerebral ischemia,10 or in vitro neuronal trauma7,9 or ischemia,11,12 leading to neuroprotection or exacerbation depending upon the mGluR subtype activated.
    [Show full text]
  • Functional Kainate-Selective Glutamate Receptors in Cultured Hippocampal Neurons (Excitatory Amino Acid Receptors/Hippocampus) JUAN LERMA*, ANA V
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11688-11692, December 1993 Neurobiology Functional kainate-selective glutamate receptors in cultured hippocampal neurons (excitatory amino acid receptors/hippocampus) JUAN LERMA*, ANA V. PATERNAIN, JosE R. NARANJO, AND BRITT MELLSTR6M Departamento de Plasticidad Neural, Instituto Cajal, Consejo Superior de Investigaciones Cientfficas, Avenida Doctor Arce 37, 28002-Madrid, Spain Communicated by Michael V. L. Bennett, September 15, 1993 ABSTRACT Glutamate mediates fast synaptic transmis- experiments, the regional distribution of high-affinity sion at the majority of excitatory synapses throughout the [3H]kainate binding sites does not match the AMPA receptor central nervous system by interacting with different types of distribution but corresponds well to the brain areas with high receptor channels. Cloning of glutamate receptors has pro- susceptibility to the neurotoxic actions of kainate (e.g., vided evidence for the existence of several structurally related hippocampal CA3 field) (13). However, patch-clamp record- subunit families, each composed of several members. It has ings from adult hippocampal neurons have revealed that been proposed that KA1 and KA2 and GluR-5, GluR-6, and native glutamate receptors are similar to the AMPA-type GluR-7 families represent subunit classes of high-affinity kain- recombinant glutamate receptors expressed from cDNA ate receptors and that in vivo different kainate receptor sub- clones but have failed so far to detect receptor channels ofthe types might be constructed from these subunits in heteromeric kainate type (14, 15). The only apparently high-affinity kain- assembly. However, despite some indications from autoradio- ate receptor channels have been found in the peripheral graphic studies and binding data in brain membranes, no nervous system (16, 17), although they are also activated by functional pure kainate receptors have so far been detected in AMPA.
    [Show full text]