electronics Article Development of a Real-Time Magnetic Field Measurement System for Synchrotron Control Joseph Vella Wallbank 1,2,* , Maria Amodeo 1,3 , Anthony Beaumont 1, Marco Buzio 1 , Vincenzo Di Capua 1,4, Christian Grech 1,2 , Nicholas Sammut 2 and David Giloteaux 1 1 CERN, European Organization for Nuclear Research, 1 Esplanade des Particules, 1217 Meyrin, Switzerland;
[email protected] (M.A.);
[email protected] (A.B.);
[email protected] (M.B.);
[email protected] (V.D.C.);
[email protected] (C.G.);
[email protected] (D.G.) 2 Faculty of ICT, University of Malta, MSD 2080 Msida, Malta;
[email protected] 3 Department of Electronics and Telecommunications (DET), Polytechnic University of Turin, 10129 Turin, Italy 4 Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, 80100 Naples, Italy * Correspondence:
[email protected] Abstract: The precise knowledge of the magnetic field produced by dipole magnets is critical to the operation of a synchrotron. Real-time measurement systems may be required, especially in the case of iron-dominated electromagnets with strong non-linear effects, to acquire the magnetic field and feed it back to various users. This work concerns the design and implementation of a new measurement system of this kind currently being deployed throughout the European Organization for Nuclear Research (CERN) accelerator complex. We first discuss the measurement principle, the general system architecture and the technology employed, focusing in particular on the most critical and Citation: Vella Wallbank, J.; Amodeo, specialized components developed, that is, the field marker trigger generator and the magnetic flux M.; Beaumont, A.; Buzio, M.; integrator.