Lappeenrannan Teknillinen Yliopisto Teknillinen Tiedekunta LUT Energia Energiatekniikan Koulutusohjelma
Total Page:16
File Type:pdf, Size:1020Kb
LAPPEENRANTA UNIVERSITY OF TECHNOLOGY Faculty of Technology LUT Energy Master’s Degree Programme in Energy Technology Elina Hakkarainen COMPARISON OF DIFFERENT CONCENTRATED SOLAR POWER COLLECTOR DESIGNS AND DVELOPMENT OF A LINEAR FRESNEL SOLAR COLLECTOR MODEL Examiners: Professor, Ph.D. Christian Breyer Professor, Ph.D. Esa Vakkilainen Supervisor: Research Scientist, M.Sc. (Tech.) Matti Tähtinen, VTT Technical Research Centre of Finland ABSTRACT Lappeenranta University of Technology Faculty of Technology Master’s Degree Programme in Energy Technology Elina Hakkarainen Comparison of Different Concentrated Solar Power Collector Designs and Development of a Linear Fresnel Solar Collector Model Master’s Thesis 2015 201 pages, 88 figures, 24 tables and 6 appendices Examiners: Professor, Ph.D. Christian Breyer Professor, Ph.D. Esa Vakkilainen Supervisor: Research Scientist, M.Sc. (Tech.) Matti Tähtinen Keywords: concentrated solar power (CSP), solar collectors, linear Fresnel technology, dynamic simulation, Apros Concentrated solar power (CSP) is a renewable energy technology, which could contribute to overcoming global problems related to pollution emissions and increasing energy demand. CSP utilizes solar irradiation, which is a variable source of energy. In order to utilize CSP technology in energy production and reliably operate a solar field including thermal energy storage system, dynamic simulation tools are needed in order to study the dynamics of the solar field, to optimize production and develop control systems. The object of this Master’s Thesis is to compare different concentrated solar power technologies and configure a dynamic solar field model of one selected CSP field design in the dynamic simulation program Apros, owned by VTT and Fortum. The configured model is based on German Novatec Solar’s linear Fresnel reflector design. Solar collector components including dimensions and performance calculation were developed, as well as a simple solar field control system. The preliminary simulation results of two simulation cases under clear sky conditions were good; the desired and stable superheated steam conditions were maintained in both cases, while, as expected, the amount of steam produced was reduced in the case having lower irradiation conditions. As a result of the model development process, it can be concluded, that the configured model is working successfully and that Apros is a very capable and flexible tool for configuring new solar field models and control systems and simulating solar field dynamic behaviour. TIIVISTELMÄ Lappeenrannan teknillinen yliopisto Teknillinen tiedekunta LUT Energia Energiatekniikan koulutusohjelma Elina Hakkarainen Keskittävän aurinkovoiman kollektoriratkaisujen vertailu ja linear Fresnel –systeemin kollektorimallin kehitys Diplomityö 2015 201 sivua, 88 kuvaa, 24 taulukkoa ja 6 liitettä Tarkastajat: Professori, Ph.D. Christian Breyer Professori, Ph.D. Esa Vakkilainen Ohjaaja: Tutkija, M.Sc. (Tech.) Matti Tähtinen Hakusanat: keskittävä aurinkovoima (CSP), aurinkokeräimet, linear Fresnel –tekniikka, dynaaminen simulointi, Apros Keywords: concentrated solar power (CSP), solar collectors, linear Fresnel technology, dynamic simulation, Apros Keskittävä aurinkovoima (CSP) on uusiutuvan energian teknologia, joka voi osallistua globaalien ilmansaasteisiin ja energian tarpeen kasvamiseen liittyvien ongelmien ratkaisemiseen. CSP-tekniikka hyödyntää vaihtelevaa auringonsäteilyä energialähteenään. Jotta CSP-tekniikkaa voitaisiin hyödyntää energian tuotannossa ja aurinkokenttäsysteemejä ja termisiä energiavarastoja operoida luotettavasti, tarvitaan dynaamisia simulointityökaluja aurinkokentän dynaamisen käyttäytymisen tutkimiseen, tuotannon optimointiin ja säätösysteemien kehitykseen. Diplomityön tavoitteena on vertailla erilaisia CSP-tekniikoita ja luoda dynaaminen aurinkokenttämalli yhdestä valitusta tekniikasta VTT:n ja Fortumin omistamalla dynaamisella simulointiohjelmalla, Aproksella. Malli perustuu saksalaisen Novatec Solarin Fresnel-teknologiaan. Työssä luotiin aurinkokentän kollektorikomponentit, joihin sisältyy kollektorien dimensiot ja suorituskyvyn määritys, sekä yksinkertainen säätöpiiri kentälle. Mallia testattiin kahdessa eri tapauksessa pilvettömällä säällä. Alustavat simulointitulokset näyttivät, että molemmissa tapauksissa voitiin tuottaa tulistettua höyryä vakaissa olosuhteissa, kun taas höyryn määrä odotetusti laski toisessa tapauksessa, kun säteilytaso oli alhaisempi. Johtopäätöksenä voidaan todeta, että luotu malli on täysin toimiva, ja että Apros on käyttökelpoinen työkalu aurinkokenttämallien rakentamiseen ja dynaamiseen simulointiin. PREFACE This Master’s Thesis has been produced for VTT Technical Research Centre of Finland during the summer and autumn of 2014. I am grateful for VTT getting this opportunity to accomplish the thesis with such an interesting and recent topic. The whole thesis process was very rewarding, and warm thanks of that belong to all VTT personnel in Jyväskylä giving all the support and tools to go through this process. To begin with, I would like to thank my great supervisor in VTT, Matti Tähtinen, for all the daily support and instruction during my work and for all the comments on the thesis. I am grateful for Christian Breyer in LUT for the very expert and motivating guidance; it is hard to find other as an inspiring person. I would also like to thank for the warm support all the other solar experts around the world, who I had a chance to meet. Many thanks to Esa Vakkilainen in LUT, not only for examining this thesis, but for all the lectures given and support for studies during my studies in LUT as well. In VTT, I would like to direct special thanks to Hannu Mikkonen for all the help and expertise shared and time spent in my thesis, to Jouni Hämäläinen and Jani Lehto for the warm support on my work and even giving the possibility to do the thesis, and to Teemu Sihvonen for the peer support during this project. Special thanks to Antti Tourunen, for initially arousing my interest in the topic. All good things come to an end, and so does the time in LUT. The past five years are unforgettable, all the respect of that belonging to great fellow students and caring environment they created. I would like to thank with all my heart all my friends, both in LUT and outside it, for the support and all the great moments. Last but not least, respectful thanks to my loving family including Lauri for all the caring and support before, during and after my studies, also (and especially) in bad days. I guess I could not give a better Christmas present myself than this completed thesis. Lappeenranta, 23rd of December, 2014 Elina Hakkarainen 5 TABLE OF CONTENTS 1 INTRODUCTION .................................................................................... 12 1.1 Background .............................................................................................. 12 1.2 Research objectives, questions and delimitations .................................... 15 1.3 Research methodology ............................................................................. 19 1.4 Structure of the thesis ............................................................................... 20 1.5 VTT Technical Research Centre of Finland ............................................. 21 2 CONCENTRATED SOLAR POWER TECHNOLOGY ..................... 22 2.1 Concentrated solar power systems ........................................................... 28 2.1.1 Parabolic troughs (PT) ............................................................... 31 2.1.2 Linear Fresnels (LFR) ............................................................... 35 2.1.3 Solar towers (ST) ....................................................................... 45 2.1.4 Parabolic dishes (PD) ................................................................ 47 2.2 Concentrated solar power and photovoltaics ............................................ 48 2.3 Concentrated solar power hybrid systems ................................................ 53 3 SOLAR COLLECTORS AND SOLAR COLLECTOR MODELLING .................................................................................................................... 62 3.1 Solar collectors ......................................................................................... 62 3.1.1 Parabolic trough collectors ........................................................ 65 3.1.2 Linear Fresnel collectors ........................................................... 68 3.1.3 Solar tower collectors ................................................................ 79 3.1.4 Parabolic dish collectors ............................................................ 85 3.1.5 Comparison of different collectors ............................................ 87 3.2 Solar collector system modelling ............................................................. 89 3.2.1 Parabolic trough collector modelling ...................................... 100 3.2.2 Linear Fresnel collector modelling .......................................... 103 3.2.3 Solar tower collector modelling .............................................. 113 3.2.4 Energy balance for vacuum and non-vacuum receivers .......... 116 4 DEVELOPMENT OF A LINEAR FRESNEL COLLECTOR MODEL .................................................................................................................. 120 4.1 Apros software ....................................................................................... 121 4.2 Selected model and