Concord's Least Wanted!

Total Page:16

File Type:pdf, Size:1020Kb

Concord's Least Wanted! CONCORD’S LEAST WANTED! Norway Maple, Acer platanoides Origin: Norway maple was originally introduced into North America by botanist John Bartram of Philadelphia who received seedlings from Philip Miller of London in 1756. He sold two Norway maples to George Washington in 1792 for planting at Mt. Vernon and soon the tree became one of the most popular street trees. It tolerates poor soils and air pollution and was originally planted to replace Elms when Dutch elm disease decimated our street tree population. Identification / Habitat: The tree is usually forty to sixty feet tall but in some cases has been reported of growing up to one hundred feet tall. The canopy is rounded and can spread sixty to eighty feet wide. The leaves are oppositely arranged and have five lobes. The trunk has grayish brown bark with regular shallow groves. It can be readily distinguished from other maples because the leaves and twigs ooze milky sap when cut or torn. Norway maple is the most widespread maple in Europe where it occurs from southern Scandinavia to the Caucasus Mountains, Turkey, and northern Iran. Dispersal: Norway maple reproduces by seed, which it produces in copious amounts. The winged fruits (samaras) are distributed by the wind; the seeds germinate readily, even in dense shade, and grow quickly when young. Problems: Many of the features that made this a desirable tree to plant by roadsides are also why it has become invasive. Being hardier then many native tree species has allowed it to outcompete and thrive. The ability of this species to grow in deep shade makes it particularly threatening to native forest habitats. Like many invasives, its ability to grow quickly gives it the upper hand when gaining control of an area. Control: Hand pulling is acceptable for small saplings of this species, with mechanical removal and a "cut-and-dab" chemical treatment needed for larger trees. Make sure to bag all limbs that may contain seed pods to prevent the spread of the plant. Any removal within 100 feet of wetland resource areas, including certified vernal pools, or within 200 feet of a perennial stream will require approval from the Concord Natural Resources Commission. Please contact the Division of Natural Resources before you begin! Division of Natural Resources ~ 978-318-3285 ~ 141 Keyes Road .
Recommended publications
  • Entomofauna Ansfelden/Austria; Download Unter
    ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 28: 377-388 ISSN 0250-4413 Ansfelden, 30. November 2007 Phytophagous Noctuidae (Lepidoptera) of the Western Black Sea Region and their ichneumonid parasitoids Z. OKYAR & M. YURTCAN Abstract Eleven agricultural and silviculturally important species of Noctuidae and their parasitoids were determined in 33 localities from the Western Black Sea region between 2001 and 2004. The ichneumonid biological control agents Enicospilus ramidulus, Barylypa amabilis and Itoplectis alternans were obtained by rearing the host larvae. K e y w o r d s : Lepidoptera, Noctuidae, Hymenoptera, Ichneumonidae, parasitoidism, Western Black Sea Region, Turkey Zusammenfassung 11 land- und forstwirtschaftlich bedeutende Noctuidae-Arten einschließlich ihrer Parasitoide aus 33 Standorten des Gebietes des westlichen Schwarzen Meeres wurden im Zeitraum 2001 bis 2004 studiert. Ichneumonidae der Arten Enicospilus ramidulus, Barylypa amabilis and Itoplectis alternans konnten durch Aufzucht der Wirtslarven festgestellt werden. 377 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Introduction The Noctuidae is the largest family of the Lepidoptera. Larvae of some species are par- ticularly harmful to agricultural and silvicultural regions worldwide. Consequently, for years intense efforts have been carried out to control them through chemical, biological, and cultural methods (LIBURD et al. 2000; HOBALLAH et al. 2004; TOPRAK & GÜRKAN 2005). In the field, noctuid control is often carried out by parasitoid wasps (CHO et al. 2006). Ichneumonids are one of the most prevalent parasitoid groups of noctuids but they also parasitize on other many Lepidoptera, Coleoptera, Hymenoptera, Diptera and Araneae (KASPARYAN 1981; FITTON et al. 1987, 1988; GAULD & BOLTON 1988; WAHL 1993; GEORGIEV & KOLAROV 1999).
    [Show full text]
  • The Invasive Alien Leaf Miner Cameraria Ohridella and the Native Tree Acer Pseudoplatanus: a Fatal Attraction?
    1 The invasive alien leaf miner Cameraria ohridella and the native tree Acer pseudoplatanus: a fatal attraction? Christelle Per´ e†,´ Sylvie Augustin∗, Ted C. J. Turlings† and Marc Kenis CABI Europe-Switzerland, 2800 Del´emont, Switzerland, ∗INRA, UR 633 Zoologie Foresti`ere, 45000 Orl´eans, France and †Institute of Zoology, University of Neuchˆatel, 2009 Neuchˆatel, Switzerland Abstract 1 The horse-chestnut leaf miner Cameraria ohridella is an invasive moth in Europe and a serious pest of horse-chestnut Aesculus hippocastanum. The moth also occasionally attacks sycamore maple Acer pseudoplatanus, when situated beside infested horse-chestnuts. 2 The main objective of the present study was to provide an overview of the relationship between C. ohridella and A. pseudoplatanus and to determine whether C. ohridella has the potential to shift to this native tree. 3 In the field, females oviposit on different deciduous tree species. Although less frequently attacked than A. hippocastanum, A. pseudoplatanus was clearly preferred for oviposition over 12 other woody species investigated. 4 Surveys in Europe demonstrated that the majority of A. pseudoplatanus trees found beside infested A. hippocastanum had mines of C. ohridella, even though more than 70% of the larvae died within the first two instars. Attack rates and development success greatly varied from site to site. Attack levels on A. pseudoplatanus were not always correlated with those on A. hippocastanum, and mines on A. pseudoplatanus were sometimes observed beside weakly-infested A. hippocastanum. 5 Field observations, experimental exposure of A. pseudoplatanus saplings and rearing trials in a common garden study showed that individual trees may vary in their susceptibility to C.
    [Show full text]
  • Genetic and Phenotypic Characterization of Figured Wood in Poplar
    Genetic and Phenotypic Characterization of Figured Wood in Poplar Youran Fan1,2, Keith Woeste1,2, Daniel Cassens1, Charles Michler1,2, Daniel Szymanski3, and Richard Meilan1,2 1Department of Forestry and Natural Resources, 2Hardwood Tree Improvement and Regeneration Center, and 3Department of Agronomy; Purdue University, West Lafayette, Indiana 47907 Abstract Materials and Methods When “Curly Aspen” (Populus canescens) was first Preliminary Results characterized in the early 1940’s[1], it attracted the attention from the wood-products industry because Genetically engineer commercially 1) Histological sections reveal that “Curly Aspen” has strong “Curly Aspen” produces an attractive veneer as a important trees to form figure. ray flecks (Fig. 10) but this is not likely to be responsible result of its figured wood. Birdseye, fiddleback and for the figure seen. quilt are other examples of figured wood that are 2) Of the 15 SSR primer pairs[6, 7, 8] tested, three have been commercially important[2]. These unusual grain shown to be polymorphic. Others are now being tested. patterns result from changes in cell orientation in Figure 6. Pollen collection. Branches of Figure 7. Pollination. Branches Ultimately, our genetic fingerprinting technique will allow “Curly Aspen” were “forced” to shed collected from a female P. alba us to distinguish “Curly Aspen” from other genotypes. the xylem. Although 50 years have passed since Figure 1. Birdseye in maple. pollen under controlled conditions. growing at Iowa State University’s finding “Curly Aspen”, there is still some question Rotary cut, three-piece book McNay Farm (south of Lucas, IA). 3) 17 jars of female P. alba branches have been pollinated match (origin: North America).
    [Show full text]
  • Acer Platanoides -Norway Maple (Aceraceae)
    Acer platanoides -Norway Maple (Aceraceae) ------------------------------------------------------------------------------ Acer platanoides is a stress tolerant tree widely planted -bark lightly fissured in youth, becoming shallowly along streets and residential landscapes. It casts a dense interlaced with ridges with age, but not deeply fissured shade and is available in purple-foliaged or uniquely nor platy as is typical of other large Maples with age shaped forms. USAGE FEATURES Function Form -shade tree for the green-foliaged forms; focal point or -large shade tree specimen tree if it is purple-foliaged or variegated -maturing to 50' tall x 50' wide Texture -upright oval growth habit in -medium-bold texture in foliage and when bare youth, becoming rounded and -thick density in foliage and average density when bare spreading with age Assets -medium growth rate -dense summer shade Culture -purple-foliaged and variegated cultivars -full sun to partial sun (partial -most urban tolerant of the shade Maples for the shade tolerant in youth) Eastern and Midwestern U.S. -prefers cool, moist summers in -fairly symmetrical branching deep, well-drained, moist soils; but tolerates urban Liabilities stress conditions -shallow root system surfaces with age -susceptible to several diseases (including Verticillium -prone to frost cracks on south-facing bark in winter wilt and anthracnose) and pests, but especially prone to -does not perform well under humid conditions of the frost cracks (bark splitting and sap oozing on the south Southern U.S. side
    [Show full text]
  • The Effect of Different Stratification Methods on the Germination of Acer Platanoides and Acer Campestre Seeds
    Bulletin of the Transilvania University of Braşov Series II: Forestry • Wood Industry • Agricultural Food Engineering • Vol. 4 (53) No. 1 - 2011 THE EFFECT OF DIFFERENT STRATIFICATION METHODS ON THE GERMINATION OF ACER PLATANOIDES AND ACER CAMPESTRE SEEDS C. DRĂGHICI1 I.V. ABRUDAN1 Abstract: The aim of this study was to assess the effect of temperature on the germination response in six origins of Acer platanoides and Acer campestre seeds. Seeds of both species were exposed to four methods of stratification: cold (3 °C) and warm (20 °C), with and without sand-peat medium. The highest percentage of germination (54.75%) was obtained, for Acer platanoides, when the treatment was conducted at 3 °C. The initiation of germination with a low percentage of germinated seeds (12.75% to 22.25%) determined the initiation of secondary dormancy for the majority of A. platanoides seeds. In the case of the A. campestre seeds, the pretreatment phase in cold environment (19weeks) proved to be too short for these origins. Key words: Acer platanoides, Acer campestre, dormancy. 1. Introduction generally cool and moist conditions (sand, peat etc.) for a period of time is called An important characteristic of temperate stratification. tree species is seed dormancy. Whilst most Cold treatment is efficient in removing Acer species - including A. campestre, A. many types of seed dormancy. The monspessulanum, A. platanoides, A. embryonic dormant state which is present pseudoplatanus, A. glabrum - exhibit in seeds of Acer platanoides, can be dormancy [8], [9], [11-13], some other removed after seed storage at high species, like A. rubrum and A.
    [Show full text]
  • Comparison of Oak and Sugar Maple Distribution and Regeneration in Central Illinois Upland Oak Forests
    COmparisON OF OaK AND Sugar MAPLE DistriBUTION AND REGENEratiON IN CEntral ILLINOIS UPLAND OaK FOREsts Peter J. Frey and Scott J. Meiners1 Abstract.—Changes in disturbance frequencies, habitat fragmentation, and other biotic pressures are allowing sugar maple (Acer saccharum) to displace oak (Quercus spp.) in the upland forest understory. The displacement of oaks by sugar maples represents a major management concern throughout the region. We collected seedling microhabitat data from five upland oak forest sites in central Illinois, each differing in age class or silvicultural treatment to determine whether oaks and maples differed in their microhabitat responses to environmental changes. Maples were overall more prevalent in mesic slope and aspect positions. Oaks were associated with lower stand basal area. Both oaks and maples showed significant habitat partitioning, and environmental relationships were consistent across sites. Results suggest that management intensity for oak in upland forests could be based on landscape position. Maple expansion may be reduced by concentrating mechanical treatments in expected areas of maple colonization, while using prescribed fire throughout stands to promote oak regeneration. INTRODUCTION Historically, white oak (Quercus alba) dominated much of the midwestern and eastern U.S. hardwood forests (Abrams and Nowacki 1992, Franklin et al. 1993). Oak is classified as an early successional forest species, and many researchers agree that oak populations were maintained by Native American or lightning-initiated fires (Abrams 2003, Abrams and Nowacki 1992, Hutchinson et al. 2008, Moser et al. 2006, Nowacki and Abrams 2008, Ruffner and Groninger 2006, Shumway et al. 2001). These periodic low to moderate surface fires favored the ecophysiological attributes of oak over those of fire-sensitive, shade-tolerant tree species, thereby continually resetting succession and allowing oaks and other shade-intolerant species to persist in both the canopy and understory (Abrams 2003, Abrams and Nowacki 1992, Crow 1988, Franklin et al.
    [Show full text]
  • Sugar Maple - Oak - Hickory Forest State Rank: S3 - Vulnerable
    Sugar Maple - Oak - Hickory Forest State Rank: S3 - Vulnerable Mesic Forest (RMF): Sugar Maple - Oak - Hickory Forests are most occurrences of RMF diverse forests in central and eastern in Massachusetts are west Massachusetts where conditions, of the Connecticut River including nutrient richness, support Valley. The presence of Northern Hardwood species mixed with multiple species of species of Oak - Hickory Forests; hickories and oaks in SMOH is a main The herbaceous layer varies from sparse difference between these to intermittent, with sparse spring two types. Broad-leaved ephemerals that may include bloodroot or Woodland-sedge is close trout-lily. Later occurring species may to being an indicator of include wild geranium, herb Robert, wild SMOH. RMF is Rock outcrops in the spring in Sugar Maple - licorice, maidenhair fern, bottlebrush Oak - Hickory Forest area. Photo: Patricia characterized by very Swain, NHESP. grass, and white wood aster. Broad- dense herbaceous growth of spring leaved, semi-evergreen broad-leaved ephemerals; SMOH shares some of the Description: Sugar Maple - Oak - woodland-sedge is close to an indicator of species but with fewer individuals of Hickory Forests occur in or east of the the community. Witch hazel, hepaticas, fewer species. SMOH has evergreen Connecticut River Valley in and wild oats usually occur in transitions ferns, Christmas fern and wood ferns, that Massachusetts. They are associated with to surrounding forest types. RMF lack. Oak - Hickory Forests and outcrops of circumneutral rock and slopes Dry, Rich Oak Forests/Woodlands lack below them that have more nutrients than abundant sugar maple, basswood, and are available in the surrounding forest.
    [Show full text]
  • Acer Platanoides in Europe: Distribution, Habitat, Usage and Threats
    Acer platanoides Acer platanoides in Europe: distribution, habitat, usage and threats G. Caudullo, D. de Rigo Acer platanoides L., commonly known as Norway maple, is a large tree that is widespread in central Europe and reaching eastwards the Ural Mountains. It is a fast-growing species, able to grow in a wide range of soils and habitat conditions. In natural stands it occurs in fresh and humid sites in temperate mixed forests, both with conifers and broadleaves. It is a secondary species, growing in small groups or individually. It has been planted intensively as an ornamental and shade tree, appreciated for its colourful foliage and large, spreading crown, in combination with its tolerance of urban conditions. Its wood is also valued for its attractive flaming figures and is used for music instruments, furniture, marquetry and turned objects. This maple is generally free of serious diseases, except in urban areas, where it is more vulnerable to pathogens. In North America it has been widely planted and is now naturalised, becoming an invasive species. The Norway maple (Acer platanoides L.) is a large and tall- domed tree, sometimes very broad, growing to 25-30 m tall and Frequency 60-80 cm in diameter, although exceptionally over 150 cm. The < 25% 25% - 50% stem is straight, short with perpendicular shoots and the crown 50% - 75% is dense with foliage. The leaves are opposite, simple, 10-15 cm > 75% Chorology long, very variable in dimension depending on the age and the Native vigour of the tree. They have five lobes with long and acuminate Introduced teeth and smooth margins.
    [Show full text]
  • Ewsletter Before May 15
    EWSLET TER of the MICHIGAN ENTOMOLOGICAL SOCIETY 2&3 April 25, 1986 T h i r t y - sec 0 n d An nua I M e e tin 9 P I ann e d Mark O'Brien has prepared an excellent ~ session for this year's annual meeting at the ~ University of Michigan's Matthaei Botanical ~ Gardens. Our featured speaker will be Robert Matthews from the University of Georgia. The extra symposium topic planned this year focu­ (-----: ses on the Great Lakes Region fauna. There will be a lobby display on "Michigan Insects." Mark chose Zingerman's Deli for the catered luncheon. He says they always have a superior spread. As an added feature, , several companies have donated products which r-· -~--, we will give away as door prizes. And don't : ,----....... forget the poster contest (rules in last ,-------, news let ter). Mark has gone all out for this meeting, {' so how about joining us! There will be the usual evening collecting, and of course, --' tours of the fabulous gardens and greenhouses. Put the date on your calendar now and send in the pre-registration form from this newsletter before May 15. See you there! 32nd Annual Meeting Michigan Entomological Society June 6, 1986 co.. 'Iz. ti\i. Matthaei Botanical Gardens 1800 Dixboro Road Ann Arbor, MICH 48105 Call: Mark O'Brien at (313) 764-0471 for further information. The NEWSLETTER of the Michigan Entomological Society is published as four numbers yearly, at irregular intervals. Please send all notes, news, new insect records, research requests, notices, season summaries, membership inquiries, etc.
    [Show full text]
  • 2021 Mwl 2 L
    Schilletter - University SCHILLETTER - UNIVERSITY VILLAGE201R COMMUNITY 201B 201D 201N CENTER D A O APPLIED R GOLF COURSE SCIENCE 201P S MAINTENANCE T COMPLEX IV T OFFICE O T LONG ROAD S G DR NBUR IVE 201M BLANK201CE 201K 104 CLUBHOUSE APPLIED D SCIENCE A COMPLEX I O R 201L 102 G 201C APPLIED 103 N O SCIENCE L COMPLEX III APPLIED D SCIENCE 201J A O COMPLEX II 201H R WASTE S T CHEMICAL T 201F D 201G O HANDLING T 101 A S SENSITIVE BUILDING Veenker Memorial Golf Course O INSTRUMENT R FACILITY E LYNN G FUHRER N A LODGE T S 205 201E 201D 201B ISU FAMILY 200 RESOURCE CENTER 205 RIVE 201A BRUNER D Iow ay C reek D A O R L L O H Io C w S ay Cre ek Disc Golf Course 112 L 13 Veenker Memorial Golf Course TH S TRE Furnam Aquatic Center ET EXTENSION 4-H (City Of Ames) T 125 REE YOUTH BUILDING H ST 13T 112 J 124A 112 A 112 J 112 H EH&S ONTARIO STREET 122A ONTARIO STREET SERVICES 120A ROAD STANGE BUILDING 124 FRED115ERIKSEN 112 K 121 BLDG SERVICES COURT ADMINISTRATIVE 112 G HAWTHORN COURT COMMUNITY FREDERIKSEN WANDA DALEY DRIVE DRIVE CENTER COURT 112 K 112 K 122 LIBRARY 120 DOE STORAGE WAREHOUSE FACILITY 119 DOE DOE CONST D 112 D-1 MECH A DOE O R 29 MAINT DOE R PRINTING & E SHOP B ROY J. CARVER PUBLICATIONS31 A CO-LABORATORY BUILDING H 112N 29 NORTH CHILLED 112 B 112 F WATER PLANT ear Creek 112 C 112 D-2 Cl 28 28 Union Pacific Railroad 35 30 27 28A 33 Pammel Woods 12 MOLECULAR 28A FIRE SERVICE BIOLOGY BUILDING COMMUNICATIONS 32 A BUILDING METALS TRANSPORTATION S ADVANCED BUILDING 28A 110 DEVELOPMENT C RUMINANT I 32 TEACHING & HORSE BARN BUILDING T NUTRITION SERVICES E RESEARCH 79 STANGE ROAD STANGE N LAB Cemetery E BUILDING WINLOCK ROAD G LABORATORY MACH ADVANCED LAB SYSTEMS 11W 11E PAMMEL DRIVE NORTH UNIVERSITY BOULEVARD PAMMEL DRIVE SPEDDING WILHELM NATIONAL NATIONAL HYLAND AVENUE HYLAND 11 22 HACH HALL HALL HALL SCIENCE SWINE RSRCH LAB FOR AG.
    [Show full text]
  • Folivory of Vine Maple in an Old-Growth Douglas-Fir-Western Hemlock Forest
    3589 David M. Braun, Bi Runcheng, David C. Shaw, and Mark VanScoy, University of Washington, Wind River Canopy Crane Research Facility, 1262 Hemlock Rd., Carson, Washington 98610 Folivory of Vine Maple in an Old-growth Douglas-fir-Western Hemlock Forest Abstract Folivory of vine maple was documented in an old-growth Douglas-fir-western hemlock forest in southwest Washington. Leaf consumption by lepidopteran larvae was estimated with a sample of 450 tagged leaves visited weekly from 7 May to 11 October, the period from bud break to leaf drop. Lepidopteran taxa were identified by handpicking larvae from additional shrubs and rearing to adult. Weekly folivory peaked in May at 1.2%, after which it was 0.2% to 0.7% through mid October. Cumulative seasonal herbivory was 9.9% of leaf area. The lepidopteran folivore guild consisted of at least 22 taxa. Nearly all individuals were represented by eight taxa in the Geometridae, Tortricidae, and Gelechiidae. Few herbivores from other insect orders were ob- served, suggesting that the folivore guild of vine maple is dominated by these polyphagous lepidopterans. Vine maple folivory was a significant component of stand folivory, comparable to — 66% of the folivory of the three main overstory conifers. Because vine maple is a regionally widespread, often dominant understory shrub, it may be a significant influence on forest lepidopteran communities and leaf-based food webs. Introduction tract to defoliator outbreaks, less is known about endemic populations of defoliators and low-level Herbivory in forested ecosystems consists of the folivory. consumption of foliage, phloem, sap, and live woody tissue by animals.
    [Show full text]
  • Moths of Ohio Guide
    MOTHS OF OHIO field guide DIVISION OF WILDLIFE This booklet is produced by the ODNR Division of Wildlife as a free publication. This booklet is not for resale. Any unauthorized INTRODUCTION reproduction is prohibited. All images within this booklet are copyrighted by the Division of Wildlife and it’s contributing artists and photographers. For additional information, please call 1-800-WILDLIFE. Text by: David J. Horn Ph.D Moths are one of the most diverse and plentiful HOW TO USE THIS GUIDE groups of insects in Ohio, and the world. An es- Scientific Name timated 160,000 species have thus far been cata- Common Name Group and Family Description: Featured Species logued worldwide, and about 13,000 species have Secondary images 1 Primary Image been found in North America north of Mexico. Secondary images 2 Occurrence We do not yet have a clear picture of the total Size: when at rest number of moth species in Ohio, as new species Visual Index Ohio Distribution are still added annually, but the number of species Current Page Description: Habitat & Host Plant is certainly over 3,000. Although not as popular Credit & Copyright as butterflies, moths are far more numerous than their better known kin. There is at least twenty Compared to many groups of animals, our knowledge of moth distribution is very times the number of species of moths in Ohio as incomplete. Many areas of the state have not been thoroughly surveyed and in some there are butterflies. counties hardly any species have been documented. Accordingly, the distribution maps in this booklet have three levels of shading: 1.
    [Show full text]