Thermodynamics of a Classical Ideal Gas—CE Mungan, Spring 2000

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamics of a Classical Ideal Gas—CE Mungan, Spring 2000 Thermodynamics of a Classical Ideal Gas—C.E. Mungan, Spring 2000 The purpose of this note is to remind one how to calculate the entropy S and chemical potential µ of a classical ideal gas. First consider a monatomic ideal gas consisting of N identical atoms of mass m each having ν = 3 translational degrees of freedom and obeying the ideal gas law, pV = NkT . (1) This law implicitly assumes that the atoms are point particles and interact only by elastic hard- sphere collisions. On the other hand, a classical gas is one which obeys classical statistics for the partition function of the system, 1 Z = ! N (2) N! where the translational partition function of a single particle is $ p2 ' ! = !TR = * exp& "# ) . (3) translational % 2m ( states (A degeneracy factor would have to be included if the sum were over the levels rather than over the individual states.) Recall that Eq. (2) is obtained by assuming that the probability that any particle occupies a state is independent of that for all other particles and furthermore that the particles densities are sufficiently low that no states are multiply occupied. It is possible for a gas to be ideal but not classical (e.g. helium under high pressure) or alternatively classical but not ideal (e.g. phonons in a high-temperature solid). Equation (3) can be converted into an integral and evaluated by noting that the number of states in some elementary volume of phase space is equal to d3rd3 p / h3 , because h3 is the phase-space volume of a single quantum state according to Heisenberg’s Uncertainty Principle. This gives 3 3 2 , +, d r d p $ p ' 4+V 2 "#p2 / 2m 2+V d "-p2 !TR = exp& "# ) = p e dp = " e dp ** h3 2m h3 * h3 d * % ( 0 - ", (4) 3 / 2 2+V d + $ 2+mkT ' = " 3 = V& 2 ) h d- - % h ( using ! " # / 2m and the integral of a Gaussian. Substitute this into Eq. (2) and use the standard relation between Z and S, E S = k ln Z + (5) T as given for example by Eq. (21.11) of Stowe, where E is the total internal energy of the gas. Invoking the equipartition theorem as E N 1 kT (6) =! " 2 and Stirling’s approximation for large N in the form ln N! ! N ln N " N (7) gives the final result, 3/2 ) " ! % ( + 2 , ) 5 V (2/mkT) , S = Nk ln$ ' + = Nk+ + ln . (8) + N 2 . 2 Nh3 * # & - * - known as the Sackur-Tetrode equation. To find the chemical potential, we can use another standard relation, " µ = !kT ln . (9) N which is Eq. (21.19) of Stowe. From this it follows that Nh3 µ = kT ln 3/2 , (10) V (2!mkT) thereby completing what we originally set out to find. These results can be cast into forms which are easier to remember. The entropy per particle is s = c ! µ / T (11) P where cP is the heat capacity per particle at constant pressure. The chemical potential is µ / kT e = ! (12) where I have introduced the average occupancy of available states, N N ! " = $Vstate (13) # V since the volume per quantum state in real space is h3 Vstate = 3/2 (14) (2!mkT) i.e., the volume in phase space divided by the volume in momentum space. An estimate for the latter is 2 3 3 / 2 prms E 3kT Vp ! prms =(3mkT) since = = . (15) 2m N 2 Equation (13) therefore has the simple interpretation that the average number of particles per state is simply the product of the number of particles per unit volume and the volume per state. Our results here are valid provided ! <<1 " µ << #kT so that the gas is classical. Next, we can extend these results to a classical diatomic ideal gas. We assume that the temperatures are low enough that the potential and kinetic vibrational degrees of freedom are frozen out, so that the molecules are rigid dumbbells of moment of inertia I. In that case, ν = 5 due to the addition of 2 rotational degrees of freedom. Equation (3) must now be corrected to include the rotational partition function, ! = !TR!ROT (16) where 2 + $ L ' "#!2l( l+1)/ 2I !ROT = * exp& "# ) = *(2l +1)e rotational % 2I ( l =0 states (17) + + 2 2 2 8- 2 IkT = (2l +1)e"#! l(l +1)/ 2I dl = e"xh / 8- IkTdx = , , h2 0 0 2 using x ! l + l and where the 2l +1 values of ml were summed over in the second step. Equation (8) thus becomes " 7 V (2!mkT )5/ 2 4!I / m % S = Nk$ + ln ' (18) 2 Nh5 #$ &' and Eq. (10) becomes Nh5 µ = kT ln 5/2 . (19) V (2!mkT) 4!I / m Equations (11)–(13) thus continue to hold provided that we redefine h3 h2 V = " . (20) state (2!mkT )3/ 2 8! 2 IkT To interpret this, consider an extended phase space VrVpVΩVL where Vr = Vstate is the volume of a quantum state in real space, VΩ = 4π is the volume in solid-angle space, and an estimate for the volume in angular-momentum space is 2 2 Lrms 2kT VL ! Lrms = 2IkT since = . (21) 2I 2 The volume of a quantum state in this extended phase space is now h5, leading directly to Eq. (20). To make this concrete, let’s substitute numerical values into these expressions. Consider say helium and dry air at 1 atm (p = 101 kPa) and RT (T = 300 K). We have ! + 2 " 3 for He cP = k with ! = # 2 $ 5 for air N p = V kT A(0.001 kg) " 4 for He m = 23 where A = # 6.022 %10 $ 0.79 %28 + 0.21 %32 for air I & 1 mr2 where r &1.2 Å for air 4 so that !1.3 meV/K for He ! $0.33 eV for He s = and µ = . " 2.1 meV/K for air " 0.53 eV for air # # $.
Recommended publications
  • Entropy: Ideal Gas Processes
    Chapter 19: The Kinec Theory of Gases Thermodynamics = macroscopic picture Gases micro -> macro picture One mole is the number of atoms in 12 g sample Avogadro’s Number of carbon-12 23 -1 C(12)—6 protrons, 6 neutrons and 6 electrons NA=6.02 x 10 mol 12 atomic units of mass assuming mP=mn Another way to do this is to know the mass of one molecule: then So the number of moles n is given by M n=N/N sample A N = N A mmole−mass € Ideal Gas Law Ideal Gases, Ideal Gas Law It was found experimentally that if 1 mole of any gas is placed in containers that have the same volume V and are kept at the same temperature T, approximately all have the same pressure p. The small differences in pressure disappear if lower gas densities are used. Further experiments showed that all low-density gases obey the equation pV = nRT. Here R = 8.31 K/mol ⋅ K and is known as the "gas constant." The equation itself is known as the "ideal gas law." The constant R can be expressed -23 as R = kNA . Here k is called the Boltzmann constant and is equal to 1.38 × 10 J/K. N If we substitute R as well as n = in the ideal gas law we get the equivalent form: NA pV = NkT. Here N is the number of molecules in the gas. The behavior of all real gases approaches that of an ideal gas at low enough densities. Low densitiens m= enumberans tha oft t hemoles gas molecul es are fa Nr e=nough number apa ofr tparticles that the y do not interact with one another, but only with the walls of the gas container.
    [Show full text]
  • Thermodynamics, Flame Temperature and Equilibrium
    Thermodynamics, Flame Temperature and Equilibrium Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames • Introduction • Fundamentals and mass balances of combustion systems • Thermodynamic quantities • Thermodynamics, flame • Flame temperature at complete temperature, and equilibrium conversion • Governing equations • Chemical equilibrium • Laminar premixed flames: Kinematics and burning velocity • Laminar premixed flames: Flame structure • Laminar diffusion flames • FlameMaster flame calculator 2 Thermodynamic Quantities First law of thermodynamics - balance between different forms of energy • Change of specific internal energy: du specific work due to volumetric changes: δw = -pdv , v=1/ρ specific heat transfer from the surroundings: δq • Related quantities specific enthalpy (general definition): specific enthalpy for an ideal gas: • Energy balance for a closed system: 3 Multicomponent system • Specific internal energy and specific enthalpy of mixtures • Relation between internal energy and enthalpy of single species 4 Multicomponent system • Ideal gas u and h only function of temperature • If cpi is specific heat at constant pressure and hi,ref is reference enthalpy at reference temperature Tref , temperature dependence of partial specific enthalpy is given by • Reference temperature may be arbitrarily chosen, most frequently used: Tref = 0 K or Tref = 298.15 K 5 Multicomponent system • Partial molar enthalpy hi,m is and its temperature dependence is where the molar specific
    [Show full text]
  • IB Questionbank
    Topic 3 Past Paper [94 marks] This question is about thermal energy transfer. A hot piece of iron is placed into a container of cold water. After a time the iron and water reach thermal equilibrium. The heat capacity of the container is negligible. specific heat capacity. [2 marks] 1a. Define Markscheme the energy required to change the temperature (of a substance) by 1K/°C/unit degree; of mass 1 kg / per unit mass; [5 marks] 1b. The following data are available. Mass of water = 0.35 kg Mass of iron = 0.58 kg Specific heat capacity of water = 4200 J kg–1K–1 Initial temperature of water = 20°C Final temperature of water = 44°C Initial temperature of iron = 180°C (i) Determine the specific heat capacity of iron. (ii) Explain why the value calculated in (b)(i) is likely to be different from the accepted value. Markscheme (i) use of mcΔT; 0.58×c×[180-44]=0.35×4200×[44-20]; c=447Jkg-1K-1≈450Jkg-1K-1; (ii) energy would be given off to surroundings/environment / energy would be absorbed by container / energy would be given off through vaporization of water; hence final temperature would be less; hence measured value of (specific) heat capacity (of iron) would be higher; This question is in two parts. Part 1 is about ideal gases and specific heat capacity. Part 2 is about simple harmonic motion and waves. Part 1 Ideal gases and specific heat capacity State assumptions of the kinetic model of an ideal gas. [2 marks] 2a. two Markscheme point molecules / negligible volume; no forces between molecules except during contact; motion/distribution is random; elastic collisions / no energy lost; obey Newton’s laws of motion; collision in zero time; gravity is ignored; [4 marks] 2b.
    [Show full text]
  • Thermodynamics of Ideal Gases
    D Thermodynamics of ideal gases An ideal gas is a nice “laboratory” for understanding the thermodynamics of a fluid with a non-trivial equation of state. In this section we shall recapitulate the conventional thermodynamics of an ideal gas with constant heat capacity. For more extensive treatments, see for example [67, 66]. D.1 Internal energy In section 4.1 we analyzed Bernoulli’s model of a gas consisting of essentially 1 2 non-interacting point-like molecules, and found the pressure p = 3 ½ v where v is the root-mean-square average molecular speed. Using the ideal gas law (4-26) the total molecular kinetic energy contained in an amount M = ½V of the gas becomes, 1 3 3 Mv2 = pV = nRT ; (D-1) 2 2 2 where n = M=Mmol is the number of moles in the gas. The derivation in section 4.1 shows that the factor 3 stems from the three independent translational degrees of freedom available to point-like molecules. The above formula thus expresses 1 that in a mole of a gas there is an internal kinetic energy 2 RT associated with each translational degree of freedom of the point-like molecules. Whereas monatomic gases like argon have spherical molecules and thus only the three translational degrees of freedom, diatomic gases like nitrogen and oxy- Copyright °c 1998{2004, Benny Lautrup Revision 7.7, January 22, 2004 662 D. THERMODYNAMICS OF IDEAL GASES gen have stick-like molecules with two extra rotational degrees of freedom or- thogonally to the bridge connecting the atoms, and multiatomic gases like carbon dioxide and methane have the three extra rotational degrees of freedom.
    [Show full text]
  • 5.5 ENTROPY CHANGES of an IDEAL GAS for One Mole Or a Unit Mass of Fluid Undergoing a Mechanically Reversible Process in a Closed System, the First Law, Eq
    Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining equation for enthalpy, H = U + PV, yields: Eliminating dU gives: For an ideal gas, dH = and V = RT/ P. With these substitutions and then division by T, As a result of Eq. (5.11), this becomes: where S is the molar entropy of an ideal gas. Integration from an initial state at conditions To and Po to a final state at conditions T and P gives: Although derived for a mechanically reversible process, this equation relates properties only, and is independent of the process causing the change of state. It is therefore a general equation for the calculation of entropy changes of an ideal gas. 1 Thermodynamic Third class Dr. Arkan J. Hadi 5.6 MATHEMATICAL STATEMENT OF THE SECOND LAW Consider two heat reservoirs, one at temperature TH and a second at the lower temperature Tc. Let a quantity of heat | | be transferred from the hotter to the cooler reservoir. The entropy changes of the reservoirs at TH and at Tc are: These two entropy changes are added to give: Since TH > Tc, the total entropy change as a result of this irreversible process is positive. Also, ΔStotal becomes smaller as the difference TH - TC gets smaller. When TH is only infinitesimally higher than Tc, the heat transfer is reversible, and ΔStotal approaches zero. Thus for the process of irreversible heat transfer, ΔStotal is always positive, approaching zero as the process becomes reversible.
    [Show full text]
  • Chapter 3 3.4-2 the Compressibility Factor Equation of State
    Chapter 3 3.4-2 The Compressibility Factor Equation of State The dimensionless compressibility factor, Z, for a gaseous species is defined as the ratio pv Z = (3.4-1) RT If the gas behaves ideally Z = 1. The extent to which Z differs from 1 is a measure of the extent to which the gas is behaving nonideally. The compressibility can be determined from experimental data where Z is plotted versus a dimensionless reduced pressure pR and reduced temperature TR, defined as pR = p/pc and TR = T/Tc In these expressions, pc and Tc denote the critical pressure and temperature, respectively. A generalized compressibility chart of the form Z = f(pR, TR) is shown in Figure 3.4-1 for 10 different gases. The solid lines represent the best curves fitted to the data. Figure 3.4-1 Generalized compressibility chart for various gases10. It can be seen from Figure 3.4-1 that the value of Z tends to unity for all temperatures as pressure approach zero and Z also approaches unity for all pressure at very high temperature. If the p, v, and T data are available in table format or computer software then you should not use the generalized compressibility chart to evaluate p, v, and T since using Z is just another approximation to the real data. 10 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 112 3-19 Example 3.4-2 ---------------------------------------------------------------------------------- A closed, rigid tank filled with water vapor, initially at 20 MPa, 520oC, is cooled until its temperature reaches 400oC.
    [Show full text]
  • The Discovery of Thermodynamics
    Philosophical Magazine ISSN: 1478-6435 (Print) 1478-6443 (Online) Journal homepage: https://www.tandfonline.com/loi/tphm20 The discovery of thermodynamics Peter Weinberger To cite this article: Peter Weinberger (2013) The discovery of thermodynamics, Philosophical Magazine, 93:20, 2576-2612, DOI: 10.1080/14786435.2013.784402 To link to this article: https://doi.org/10.1080/14786435.2013.784402 Published online: 09 Apr 2013. Submit your article to this journal Article views: 658 Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tphm20 Philosophical Magazine, 2013 Vol. 93, No. 20, 2576–2612, http://dx.doi.org/10.1080/14786435.2013.784402 COMMENTARY The discovery of thermodynamics Peter Weinberger∗ Center for Computational Nanoscience, Seilerstätte 10/21, A1010 Vienna, Austria (Received 21 December 2012; final version received 6 March 2013) Based on the idea that a scientific journal is also an “agora” (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clau- sius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like “heat”, to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities.
    [Show full text]
  • Module P7.4 Specific Heat, Latent Heat and Entropy
    FLEXIBLE LEARNING APPROACH TO PHYSICS Module P7.4 Specific heat, latent heat and entropy 1 Opening items 4 PVT-surfaces and changes of phase 1.1 Module introduction 4.1 The critical point 1.2 Fast track questions 4.2 The triple point 1.3 Ready to study? 4.3 The Clausius–Clapeyron equation 2 Heating solids and liquids 5 Entropy and the second law of thermodynamics 2.1 Heat, work and internal energy 5.1 The second law of thermodynamics 2.2 Changes of temperature: specific heat 5.2 Entropy: a function of state 2.3 Changes of phase: latent heat 5.3 The principle of entropy increase 2.4 Measuring specific heats and latent heats 5.4 The irreversibility of nature 3 Heating gases 6 Closing items 3.1 Ideal gases 6.1 Module summary 3.2 Principal specific heats: monatomic ideal gases 6.2 Achievements 3.3 Principal specific heats: other gases 6.3 Exit test 3.4 Isothermal and adiabatic processes Exit module FLAP P7.4 Specific heat, latent heat and entropy COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 1 Opening items 1.1 Module introduction What happens when a substance is heated? Its temperature may rise; it may melt or evaporate; it may expand and do work1—1the net effect of the heating depends on the conditions under which the heating takes place. In this module we discuss the heating of solids, liquids and gases under a variety of conditions. We also look more generally at the problem of converting heat into useful work, and the related issue of the irreversibility of many natural processes.
    [Show full text]
  • Calculation of Chemical Potential and Activity Coefficient of Two Layers of Co2 Adsorbed on a Graphite Surface
    Physical Chemistry Chemical Physics CALCULATION OF CHEMICAL POTENTIAL AND ACTIVITY COEFFICIENT OF TWO LAYERS OF CO2 ADSORBED ON A GRAPHITE SURFACE Journal: Physical Chemistry Chemical Physics Manuscript ID: CP-ART-08-2014-003782.R1 Article Type: Paper Date Submitted by the Author: 07-Nov-2014 Complete List of Authors: Trinh, Thuat; NTNU, Department of Chemistry Bedeaux, Dick; NTNU, Chemistry Simon, Jean-Marc; Universit� de Bourgogne, Chemistry Kjelstrup, Signe; Norwegian University of Science and Technology, Natural Sciences Page 1 of 8 Physical Chemistry Chemical Physics PCCP RSC Publishing ARTICLE CALCULATION OF CHEMICAL POTENTIAL AND ACTIVITY COEFFICIENT OF TWO LAYERS Cite this: DOI: 10.1039/x0xx00000x OF CO2 ADSORBED ON A GRAPHITE SURFACE T.T. Trinh,a D. Bedeaux a , J.-M Simon b and S. Kjelstrup a,c,* Received 00th January 2014, Accepted 00th January 2014 We study the adsorption of carbon dioxide at a graphite surface using the new Small System DOI: 10.1039/x0xx00000x Method, and find that for the temperature range between 300K and 550K most relevant for CO separation; adsorption takes place in two distinct thermodynamic layers defined according www.rsc.org/ 2 to Gibbs. We calculate the chemical potential, activity coefficient in both layers directly from the simulations. Based on thermodynamic relations, the entropy and enthalpy of the CO 2 adsorbed layers are also obtained. Their values indicate that there is a trade-off between entropy and enthalpy when a molecule chooses for one of the two layers. The first layer is a densely packed monolayer of relatively constant excess density with relatively large repulsive interactions and negative enthalpy.
    [Show full text]
  • Chapter 4 Solution Theory
    SMA5101 Thermodynamics of Materials Ceder 2001 Chapter 4 Solution Theory In the first chapters we dealt primarily with closed systems for which only heat and work is transferred between the system and the environment. In the this chapter, we study the thermodynamics of systems that can also exchange matter with other systems or with the environment, and in particular, systems with more than one component. First we focus on homogeneous systems called solutions. Next we consider heterogeneous systems with emphasis on the equilibrium between different multi-component phases. 4.1 WHAT IS A SOLUTION? A solution in thermodynamics refers to a system with more than one chemical component that is mixed homogeneously at the molecular level. A well-known example of a solution is salt water: The Na+, Cl- and H2O ions are intimately mixed at the atomic level. Many systems can be characterized as a dispersion of one phase within another phase. Although such systems typically contain more than one chemical component, they do not form a solution. Solutions are not limited to liquids: for example air, a mixture of predominantly N2 and O2, forms a vapor solution. Solid solutions such as the solid phase in the Si-Ge system are also common. Figure 4.1. schematically illustrates a binary solid solution and a binary liquid solution at the atomic level. Figure 4.1: (a) The (111) plane of the fcc lattice showing a cut of a binary A-B solid solution whereby A atoms (empty circles) are uniformly mixed with B atoms (filled circles) on the atomic level.
    [Show full text]
  • Real Gases – As Opposed to a Perfect Or Ideal Gas – Exhibit Properties That Cannot Be Explained Entirely Using the Ideal Gas Law
    Basic principle II Second class Dr. Arkan Jasim Hadi 1. Real gas Real gases – as opposed to a perfect or ideal gas – exhibit properties that cannot be explained entirely using the ideal gas law. To understand the behavior of real gases, the following must be taken into account: compressibility effects; variable specific heat capacity; van der Waals forces; non-equilibrium thermodynamic effects; Issues with molecular dissociation and elementary reactions with variable composition. Critical state and Reduced conditions Critical point: The point at highest temp. (Tc) and Pressure (Pc) at which a pure chemical species can exist in vapour/liquid equilibrium. The point critical is the point at which the liquid and vapour phases are not distinguishable; because of the liquid and vapour having same properties. Reduced properties of a fluid are a set of state variables normalized by the fluid's state properties at its critical point. These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor, provide the basis for the simplest form of the theorem of corresponding states The reduced pressure is defined as its actual pressure divided by its critical pressure : The reduced temperature of a fluid is its actual temperature, divided by its critical temperature: The reduced specific volume ") of a fluid is computed from the ideal gas law at the substance's critical pressure and temperature: This property is useful when the specific volume and either temperature or pressure are known, in which case the missing third property can be computed directly. 1 Basic principle II Second class Dr. Arkan Jasim Hadi In Kay's method, pseudocritical values for mixtures of gases are calculated on the assumption that each component in the mixture contributes to the pseudocritical value in the same proportion as the mol fraction of that component in the gas.
    [Show full text]
  • Chapter 2: Equation of State
    Chapter 2: Equation of State Introduction The Local Thermodynamic Equilibrium The Distribution Function Black Body Radiation Fermi-Dirac EoS The Complete Degenerate Gas Application to White Dwarfs Temperature Effects Ideal Gas The Saha Equation “Almost Perfect” EoS Adiabatic Exponents and Other Derivatives Outline Introduction The Local Thermodynamic Equilibrium The Distribution Function Black Body Radiation Fermi-Dirac EoS The Complete Degenerate Gas Application to White Dwarfs Temperature Effects Ideal Gas The Saha Equation “Almost Perfect” EoS Adiabatic Exponents and Other Derivatives The EoS, together with the thermodynamic equation, allows to study how the stellar material properties react to the heat, changing density, etc. Introduction Goal of the Chapter: derive the equation of state (or the mutual dependencies among local thermodynamic quantities such as P; T ; ρ, and Ni ), not only for the classic ideal gas, but also for photons and fermions. Introduction Goal of the Chapter: derive the equation of state (or the mutual dependencies among local thermodynamic quantities such as P; T ; ρ, and Ni ), not only for the classic ideal gas, but also for photons and fermions. The EoS, together with the thermodynamic equation, allows to study how the stellar material properties react to the heat, changing density, etc. Thermodynamics Thermodynamics is defined as the branch of science that deals with the relationship between heat and other forms of energy, such as work. The Laws of Thermodynamics: I First law: Energy can be neither created nor destroyed. This is a version of the law of conservation of energy, adapted for (isolated) thermodynamic systems. I Second law: In an isolated system, natural processes are spontaneous when they lead to an increase in disorder, or entropy, finally reaching an equilibrium.
    [Show full text]