Illustrated Handbook of Succulent Plants: Crassulaceae Series: Illustrated Handbook of Succulent Plants

Total Page:16

File Type:pdf, Size:1020Kb

Illustrated Handbook of Succulent Plants: Crassulaceae Series: Illustrated Handbook of Succulent Plants U. Eggli (Ed.) Illustrated Handbook of Succulent Plants: Crassulaceae Series: Illustrated Handbook of Succulent Plants ▶ With 341 superb colour photographs ▶ The complete family is described, including keys to genera, typification and distribution data of all accepted taxa ▶ Full synonymy and literature references are given ▶ Ideally suited to the committed collector of succulent plants The Illustrated Handbook of Succulent Plants represents the first comprehensive taxonomic treatment of succulents in thirty years. It covers over 9000 taxa of all succulents except Cactaceae. 2003, XIII, 506 p. The Crassulaceae (stonecrop family) volume presents the first complete treatment of the family for many decades. The family is a very diverse group, and plants range from Printed book tiny insignificant annual herbs to perennial shrubs and trees. Many of the species have attractive flowers. The entire family consists of 33 genera and 23 hybrid genera with a Hardcover total of 1410 species and 305 infraspecific taxa. The largest genus is Sedum (stonecrop, ▶ 299,99 € | £249.99 | $379.99 wallpepper) with 428 species. Other large genera are Aeonium (36 species), Crassula (195 ▶ *320,99 € (D) | 329,99 € (A) | CHF 354.00 species), Dudleya (47 species), Echeveria (139 species), Kalanchoe (144 species), Rhodiola (58 species), Sempervivum (63 species), and Tylecodon (46 species). A key to all genera eBook is included. The descriptions of all accepted taxa are supplemented with typification and distribution data, full synonymy, literature references and 341 colour photos. Available from your bookstore or ▶ springer.com/shop MyCopy Printed eBook for just ▶ € | $ 24.99 ▶ springer.com/mycopy Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected]. ▶ For outside the Americas call +49 (0) 6221-345-4301 ▶ or email us at: [email protected]. The first € price and the £ and $ price are net prices, subject to local VAT. Prices indicated with * include VAT for books; the €(D) includes 7% for Germany, the €(A) includes 10% for Austria. Prices indicated with ** include VAT for electronic products; 19% for Germany, 20% for Austria. All prices exclusive of carriage charges. Prices and other details are subject to change without notice. All errors and omissions excepted..
Recommended publications
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Crassulaceae, Eurytoma Bryophylli, Fire, Invasions, Madagascar, Osphilia Tenuipes, Rhembastus Sp., Soil
    B I O L O G I C A L C O N T R O L O F B R Y O P H Y L L U M D E L A G O E N S E (C R A S S U L A C E A E) Arne Balder Roderich Witt A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy JOHANNESBURG, 2011 DECLARATION I declare that this thesis is my own, unaided work. It is being submitted for the Degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or any other examination in any other University. ______________________ ______ day of ______________________ 20_____ ii ABSTRACT Introduced plants will lose interactions with natural enemies, mutualists and competitors from their native ranges, and possibly gain interactions with new species, under new abiotic conditions in their new environment. The use of biocontrol agents is based on the premise that introduced species are liberated from their natural enemies, although in some cases introduced species may not become invasive because they acquire novel natural enemies. In this study I consider the potential for the biocontrol of Bryophyllum delagoense, a Madagascan endemic, and hypothesize as to why this plant is invasive in Australia and not in South Africa. Of the 33 species of insects collected on B. delagoense in Madagascar, three species, Osphilia tenuipes, Eurytoma bryophylli, and Rhembastus sp. showed potential as biocontrol agents in Australia.
    [Show full text]
  • Wound Healing Activity and Phytochemical Screening of Purified Fractions of Sempervivum Tectorum L. Leaves on HCT 116
    Received: 31 January 2019 Revised: 12 March 2019 Accepted: 17 April 2019 DOI: 10.1002/pca.2844 SPECIAL ISSUE ARTICLE Wound healing activity and phytochemical screening of purified fractions of Sempervivum tectorum L. leaves on HCT 116 Fabio Cattaneo1 | Simona De Marino2 | Melania Parisi1 | Carmen Festa2 | Martina Castaldo1 | Claudia Finamore3 | Francesca Duraturo1 | Cristiana Zollo1 | Rosario Ammendola1 | Franco Zollo2 | Maria Iorizzi3 1 Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi Abstract di Napoli Federico II, Naples, Italy Introduction: Sempervivum tectorum L. (Crassulaceae), is a succulent perennial plant 2 Dipartimento di Farmacia, Università degli widespread in Mediterranean countries and commonly used in traditional medicine Studi di Napoli “Federico II”, Naples, Italy 3 Dipartimento di Bioscienze e Territorio, for ear inflammation, ulcers and skin rashes as a refrigerant and astringent. Università degli Studi del Molise, Pesche, Objective: To demonstrate the therapeutic effects of the plant, various fractions (Isernia), Italy were purified and characterised. The potential wound healing activity, proliferation Correspondence rate and intracellular signalling cascades were investigated by using human epithelial Maria Iorizzi, Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, colorectal carcinoma (HCT 116) cells. Contrada Fonte Lappone, I–86090 Pesche Methodology: An extraction method without organic solvents was applied for the (Isernia), Italy. Email: [email protected] first time. The purification was carried out by droplet counter current chromatogra- phy (DCCC) coupled with high‐performance liquid chromatography (HPLC) and electrospray ionisation mass spectrometry (ESI‐MS) data. By nuclear magnetic reso- nance (NMR) [1H, 13C and two‐dimensional (2D) experiments] pure components were identified. Wound healing and cell proliferation assays were utilised to determine the role of the isolated S.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Houseleek Bio Extract 'C' G (CH) P-00025259 Botanica Gmbh • Industrie Nord • 5643 Sins • Switzerland • • +41 41 757 00 00
    Documentation: Houseleek Bio Extract 'C' G (CH) P-00025259 Botanica GmbH • Industrie Nord • 5643 Sins • Switzerland • www.botanica.ch • +41 41 757 00 00 1 Sempervivum Tectorum Houseleek The unusual alpine “Aloe Vera” Documentation: Houseleek Bio Extract 'C' G (CH) P-00025259 Botanica GmbH • Industrie Nord • 5643 Sins • Switzerland • www.botanica.ch • +41 41 757 00 00 Contents .........................................................................................................................Page 1. Summary .......................................................................................................................... 3 2. Classification .................................................................................................................... 3 3. General Information on Sempervivum tectorum ............................................................ 4 3.1. Description of the houseleek ................................................................................... 4 3.2. Use ........................................................................................................................... 4 3.3. Content .................................................................................................................... 5 4. Dermatological activities of houseleek extracts .............................................................. 5 4.1. Houseleek extract is an agonist of cannabinoid receptor type 1 ............................ 5 4.2. Houseleek leaf extract enhances glucose uptake in HaCaT keratinocytes
    [Show full text]
  • Some Major Families and Genera of Succulent Plants
    SOME MAJOR FAMILIES AND GENERA OF SUCCULENT PLANTS Including Natural Distribution, Growth Form, and Popularity as Container Plants Daniel L. Mahr There are 50-60 plant families that contain at least one species of succulent plant. By far the largest families are the Cactaceae (cactus family) and Aizoaceae (also known as the Mesembryanthemaceae, the ice plant family), each of which contains about 2000 species; together they total about 40% of all succulent plants. In addition to these two families there are 6-8 more that are commonly grown by home gardeners and succulent plant enthusiasts. The following list is in alphabetic order. The most popular genera for container culture are indicated by bold type. Taxonomic groupings are changed occasionally as new research information becomes available. But old names that have been in common usage are not easily cast aside. Significant name changes noted in parentheses ( ) are listed at the end of the table. Family Major Genera Natural Distribution Growth Form Agavaceae (1) Agave, Yucca New World; mostly Stemmed and stemless Century plant and U.S., Mexico, and rosette-forming leaf Spanish dagger Caribbean. succulents. Some family yuccas to tree size. Many are too big for container culture, but there are some nice small and miniature agaves. Aizoaceae (2) Argyroderma, Cheiridopsis, Mostly South Africa Highly succulent leaves. Iceplant, split-rock, Conophytum, Dactylopis, Many of these stay very mesemb family Faucaria, Fenestraria, small, with clumps up to Frithia, Glottiphyllum, a few inches. Lapidaria, Lithops, Nananthus, Pleisopilos, Titanopsis, others Delosperma; several other Africa Shrubs or ground- shrubby genera covers. Some marginally hardy. Mestoklema, Mostly South Africa Leaf, stem, and root Trichodiadema, succulents.
    [Show full text]
  • Trial Report
    TRIAL REPORT 2005-2008 Sempervivum Trials Office The Royal Horticultural Society Garden, Wisley, Woking, Surrey, GU23 6QB Sempervivum Final Report 2005-2008 - Trial 942 1 Trial of Sempervivum AGM 2005-2008 AGM Entries receiving The Award of Garden Merit (H4) Sempervivum arachnoideum AGM (H4) 1993, reconfirmed 2008. Sent by Fernwood Nursery and by Beechcroft Nursery. [Trial Nos.1 & 2]. Votes 8-0. Stunning plant for the garden and trough. Withstood winter well. Well defined rosettes. Reliable species. Widely available from nurseries – see RHS Plant Finder Sempervivum arachnoideum L. subsp. tomentosum AGM (H4) 1993, reconfirmed 2008. Sent by Royal Botanic Garden Kew. Average diameter of a mature but unflowered rosette is 10mm; foliage in July is green 138B, flushed reddish brown 178B on underside of outer leaves, shortly hairy and strongly cobwebbed; flowers are a duller version of Pink 58C. Very attractive. Has lovely purple colouring in spring. Widely available from nurseries – see RHS Plant Finder Sempervivum calcareum 'Extra' AGM (H4) 2008 Sent by Fernwood Nursery. The many-leaved, mature but unflowered rosettes average 20mm in diameter; foliage in July is green 138B tipped very dark red 187A and the leaves are very shortly hairy, glaucescent with ciliate fringed edges; the inflorescence is glandular and tacky; flowers are white NN155C flushed light green toward tip and pink at base; filaments reddish purple 64B, anthers yellow. Outstanding colour and habit. Consistently good throughout the trail. Widely available from nurseries – see RHS Plant Finder 2 Sempervivum calcareum 'Guillaumes' AGM (H4) 2008. Sent by Fernwood Nursery. Entered as S. calcareum from Guillaumes and named by sender.
    [Show full text]
  • Ecophysiology of Crassulacean Acid Metabolism (CAM)
    Annals of Botany 93: 629±652, 2004 doi:10.1093/aob/mch087, available online at www.aob.oupjournals.org INVITED REVIEW Ecophysiology of Crassulacean Acid Metabolism (CAM) ULRICH LUÈ TTGE* Institute of Botany, Technical University of Darmstadt, Schnittspahnstrasse 3±5, D-64287 Darmstadt, Germany Received: 3 October 2003 Returned for revision: 17 December 2003 Accepted: 20 January 2004 d Background and Scope Crassulacean Acid Metabolism (CAM) as an ecophysiological modi®cation of photo- synthetic carbon acquisition has been reviewed extensively before. Cell biology, enzymology and the ¯ow of carbon along various pathways and through various cellular compartments have been well documented and dis- cussed. The present attempt at reviewing CAM once again tries to use a different approach, considering a wide range of inputs, receivers and outputs. d Input Input is given by a network of environmental parameters. Six major ones, CO2,H2O, light, temperature, nutrients and salinity, are considered in detail, which allows discussion of the effects of these factors, and combinations thereof, at the individual plant level (`physiological aut-ecology'). d Receivers Receivers of the environmental cues are the plant types genotypes and phenotypes, the latter includ- ing morphotypes and physiotypes. CAM genotypes largely remain `black boxes', and research endeavours of genomics, producing mutants and following molecular phylogeny, are just beginning. There is no special development of CAM morphotypes except for a strong tendency for leaf or stem succulence with large cells with big vacuoles and often, but not always, special water storage tissues. Various CAM physiotypes with differing degrees of CAM expression are well characterized. d Output Output is the shaping of habitats, ecosystems and communities by CAM.
    [Show full text]
  • Multivariate Morphometric Study of the Sempervivum Montanum Group (Crassulaceae) in the West Carpathians
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Phyton, Annales Rei Botanicae, Horn Jahr/Year: 1998 Band/Volume: 38_2 Autor(en)/Author(s): Letz Roman, Marhold Karol Artikel/Article: Multivariate Morphometric Study of the Sempervivum montanum Group (Crassulaceae) in the West Carpathians. 323-336 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Phyton (Horn, Austria) Vol. 38 Fasc. 2 323-336 29. 12. 1998 Multivariate Morphometric Study of the Sempervivum montanum Group (Crassulaceae) in the West Carpathians. By Roman LETZ *) and Karol MARHOLD **) With 8 Figures Received April 16, 1998 Key words: Crassulaceae, Sempervivum montanum. - Cluster analysis, discriminant analysis, multivariate morphometrics, principal components analysis. - West Carpathians, Flora of Slovakia. Summary LETZ R. & MARHOLD K. 1998: Multivariate morphometric study of the Semper- vivum montanum group in the West Carpathians. - Phyton (Horn, Austria) 38 (2): 323-336, 8 figures. - English with German summary. Multivariate morphometric study of the Sempervivum montanum group based on material from the West Carpathians is presented. Methods used include principal components analysis, cluster analysis and discriminant analysis. The study con- firmed the possibility to recognise two taxa on the subspecific level in the area studied. The correct names of these taxa, both different from S. montanum L. s. str., depend on the acceptance of the proposal to reject the name S. carpathicum WETTST. ex PRODAN. Therefore we treat them at present under informal designations, as "lowland" and "upland" taxon. The proposed subspecies differ in respect of the size of rosettes and rosette leaves and the colour of leaves.
    [Show full text]
  • Sempervivum * X (Hybrid); Var.( Variety); F
    Sempervivum * x (hybrid); var.( variety); f. (form); G. (Group); ssp. (subspecies) # Botanical Name * Cultivar Description Sempervivum tectorum S. marmoreum 1 x 'Othello' pink and green 'Atropurpureum' 'Rubrifolia' also 'Silver Olympic';small rosettes, cobwebbed; 2 Sempervivum x 'Zilver Olympic' inner leaves green, outer pale red Sempervivum Syn. Jovibarba sobolifera; small bright green 3 subsp. arenarium globiferum leaves, chicks tiny red, round balls Sempervivum 4 'Robin' green inside, red outside of scales; cobweb arachnoideum green inner surface, almost all outer scale 5 Jovibarba hirta surface red 6 Sempervivum x 'Green Wheel' all green, scales circle growth 7 Sempervivum x 'Emerald Giant' Sempervivum 8 subsp. tomentosum 'Clarchen' open green with pink; very heavy webbing arachnoideum Sempervivum tectorum 9 x S. 'Lady Kelly' 'El Toro' red to pink with dark red stripes, khaki tips 'Hayling' 10 Sempervivum x 'Happy' red lower scale green tip 11 Sempervivum 'Red Heart' red base of scales at center only 12 Sempervivum x 'Hester' green with red tip (points); 3" 13 Sempervivum tectorum x 'Pacific Devils' Food' barn red/brown 14 Sempervivum 'Silver King' scales red at base, green at tips also sold as 'Donna Rose'; showy flowers; red 15 Sempervivum tectorum 'Donarrose' green tiny center with cobweb 16 Sempervivum x 'Excalibur' U.K.;red tips pointing upward and in, pale green 17 Sempervivum x 'Hey Hey' inner maroon leaves with green center and tips of 18 Sempervivum x 'Hopewell' leaves from U.K.;red/brown inner with green tips and 19 Sempervivum
    [Show full text]
  • Crassulaceae A. P. De Candolle (Stonecrop Family) Succulent Herbs to Shrubs; Stem Often with Cortical Or Medullary Vascular Bund
    Crassulaceae A. P. de Candolle (Stonecrop Family) Succulent herbs to shrubs; stem often with cortical or medullary vascular bundles; with crassulacean acid metabolism (CAM); tannins present; often with alka- Floral formula: loids, sometimes cyanogenic. Hairs simple, but plants more commonly glabrous and glaucous. Leaves alter- nate, opposite, or whorled, sometimes in a basal rosette, simple or rarely pinnately compound, entire to crenate, Distribution and ecology: Widespread from tropical to dentate or serrate, succulent, with pinnate venation, but boreal regions; plants very often of arid habitats. veins often obscure; stipules lacking. Inflorescences deter- minate, sometimes reduced to a solitary flower, terminal Genera/species: 35/1500. Major genera: Sedum (450), or axillary. Flowers usually bisexual, radial, lacking a Crassula (300), Echeveria (150), and Kalanchoe (125). These, along with Diamorpha, Dudleya, Graptapetalum, Lenophyl- hypanthium. Sepals usually 4 or 5, distinct to connate. lum, and Villadia occur rn the continental urmeu sidits Petals usually 4 or 5, distinct to connate (and then form- and/or Canada. ing a ± tubular corolla), imbricate. Stamens 4-10; fila- ments distinct to slightly connate, free or adnate to corol- Economic plants and products: Sedum (stonecrop), la; anthers opening by terminal pores; pollen grains Echeveria, Kalanchoe, and Semperoivum (houseleek) are tricolporate. Carpels usually 4 or 5, distinct to slightly con- grown as ornamentals because of their distinctive succu- nate at base; ovaries superior, with parietal placentation lent leaves. (or axile at base, if carpels fused); stigmas minute. Each carpel subtended by a scale-like nectar-producing gland. Ovules few to numerous in each carpel. Fruit an aggregate of follicles, rarely a capsule (Figure 8.53).
    [Show full text]