Ellipsometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polarization Optics Polarized Light Propagation Partially Polarized Light
The physics of polarization optics Polarized light propagation Partially polarized light Polarization Optics N. Fressengeas Laboratoire Mat´eriaux Optiques, Photonique et Syst`emes Unit´ede Recherche commune `al’Universit´ede Lorraine et `aSup´elec Download this document from http://arche.univ-lorraine.fr/ N. Fressengeas Polarization Optics, version 2.0, frame 1 The physics of polarization optics Polarized light propagation Partially polarized light Further reading [Hua94, GB94] A. Gerrard and J.M. Burch. Introduction to matrix methods in optics. Dover, 1994. S. Huard. Polarisation de la lumi`ere. Masson, 1994. N. Fressengeas Polarization Optics, version 2.0, frame 2 The physics of polarization optics Polarized light propagation Partially polarized light Course Outline 1 The physics of polarization optics Polarization states Jones Calculus Stokes parameters and the Poincare Sphere 2 Polarized light propagation Jones Matrices Examples Matrix, basis & eigen polarizations Jones Matrices Composition 3 Partially polarized light Formalisms used Propagation through optical devices N. Fressengeas Polarization Optics, version 2.0, frame 3 The physics of polarization optics Polarization states Polarized light propagation Jones Calculus Partially polarized light Stokes parameters and the Poincare Sphere The vector nature of light Optical wave can be polarized, sound waves cannot The scalar monochromatic plane wave The electric field reads: A cos (ωt kz ϕ) − − A vector monochromatic plane wave Electric field is orthogonal to wave and Poynting vectors -
Polarization of Electron and Photon Beams
Revista Brasileira de Física, Vol. 11, NP 4, 1981 Polarization of Electron and Photon Beams ?. R. S. GOMES Instituto de Física, Universidade Federal Fluminense, Niterdi, RJ. Recebido eni 17 de Fevereiro de 1981 In this work the concepts of polarization of photons and re- lativistic electrons are introduced in a simplified form. Although there are important differences in the concepts of photon and electron polarization, it is shown that the saine formal ism may be used to des- cribe them, which is very useful in the study oF interactions concer- ned with polarizations of both photons and electrons, as in the yho- toelectric and Compton effects. Photons are considered, in this work, as a special case of relativistic spin 1 particles, with zero rest mass. Neste trabalho são apresentados, de uma forma simplificada, os conceitos de polarização de fotons e eletrons. Embora existam im- portantes diferenças nos conceitos de polarizaçao de fot0ns.e eletrons, mostra-se que o mesmo formalismo pode ser usado para descreve-los, o que é muito útil no estudo de interações envolvendo polarizações de ambos, fotons e eletrons, como em efeitos fotoelétrico e Compton. Nes- te trabalho os fotons são considerados como um caso especial de partí- culas relativísticas de spin 1, com massa de repouso nula. 1. INTRODUCTION Dur ing a research progi-am concerned xi th correlat ions between polarizãtions of photons and electror~sin relativistic photoelectric effect, i t was noticed the lack of a text which brings together thecon- cepts and simplified descriptions of polarization of electron and pho- ton beams . That was the reason for trying to write such a text. -
Characterization of an Active Metasurface Using Terahertz Ellipsometry Nicholas Karl, Martin S
Characterization of an active metasurface using terahertz ellipsometry Nicholas Karl, Martin S. Heimbeck, Henry O. Everitt, Hou-Tong Chen, Antoinette J. Taylor, Igal Brener, Alexander Benz, John L. Reno, Rajind Mendis, and Daniel M. Mittleman Citation: Appl. Phys. Lett. 111, 191101 (2017); View online: https://doi.org/10.1063/1.5004194 View Table of Contents: http://aip.scitation.org/toc/apl/111/19 Published by the American Institute of Physics APPLIED PHYSICS LETTERS 111, 191101 (2017) Characterization of an active metasurface using terahertz ellipsometry Nicholas Karl,1 Martin S. Heimbeck,2 Henry O. Everitt,2 Hou-Tong Chen,3 Antoinette J. Taylor,3 Igal Brener,4 Alexander Benz,4 John L. Reno,4 Rajind Mendis,1 and Daniel M. Mittleman1 1School of Engineering, Brown University, 184 Hope St., Providence, Rhode Island 02912, USA 2U.S. Army AMRDEC, Redstone Arsenal, Huntsville, Alabama 35808, USA 3Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 4Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA (Received 11 September 2017; accepted 19 October 2017; published online 6 November 2017) Switchable metasurfaces fabricated on a doped epi-layer have become an important platform for developing techniques to control terahertz (THz) radiation, as a DC bias can modulate the transmis- sion characteristics of the metasurface. To model and understand this performance in new device configurations accurately, a quantitative understanding of the bias-dependent surface characteristics is required. We perform THz variable angle spectroscopic ellipsometry on a switchable metasur- face as a function of DC bias. By comparing these data with numerical simulations, we extract a model for the response of the metasurface at any bias value. -
Optical Characterization of Ultra-Thin Films of Azo-Dye-Doped Polymers Using Ellipsometry and Surface Plasmon Resonance Spectroscopy
hv photonics Article Optical Characterization of Ultra-Thin Films of Azo-Dye-Doped Polymers Using Ellipsometry and Surface Plasmon Resonance Spectroscopy Najat Andam 1,2 , Siham Refki 2, Hidekazu Ishitobi 3,4, Yasushi Inouye 3,4 and Zouheir Sekkat 1,2,4,* 1 Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat BP 1014, Morocco; [email protected] 2 Optics and Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat BP 10100, Morocco; [email protected] 3 Frontiers Biosciences, Osaka University, Osaka 565-0871, Japan; [email protected] (H.I.); [email protected] (Y.I.) 4 Department of Applied Physics, Osaka University, Osaka 565-0871, Japan * Correspondence: [email protected] Abstract: The determination of optical constants (i.e., real and imaginary parts of the complex refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate determination of nc and d. In this paper, we use SPR and profilometry to determine the complex refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer concentrations (a feature which constitutes the originality of this work), and we compare the SPR results with those obtained by using spectroscopic ellipsometry measurements performed on the Citation: Andam, N.; Refki, S.; Ishitobi, H.; Inouye, Y.; Sekkat, Z. -
Outline • Types of Polarization • Jones' Matrices • Birefringence • Polarizing Optical Components • Polarization in Scattering
Polarization Ivan Bazarov Cornell Physics Department / CLASSE Outline • Types of polarization • Jones’ matrices • Birefringence • Polarizing optical components • Polarization in scattering 1 Polarization P3330 Exp Optics FA’2016 Polarization ellipse For light traveling along z direction: k E = vB ⇥ with a complex amplitude: The electric field traces out an ellipse: 2 Polarization P3330 Exp Optics FA’2016 Polarization ellipse Polarization types: • linearly polarized light • circularly polarized light • unpolarized light (non-laser) 3 Polarization P3330 Exp Optics FA’2016 Linear & circular polarizations linearly polarized light circularly polarized light Right CCW Left CW 4 Polarization P3330 Exp Optics FA’2016 Unpolarized light? Unpolarized light means random (time-changing) polarization direction, e.g. excited atoms in a solid (a light bulb) emit randomly polarized light packets. 5 Polarization P3330 Exp Optics FA’2016 Jones vector We can represent any monochromatic wave polarization as a Jones’ vector: For normalized intensity : E.g. orthogonal polarizations whenever J0 J =0 1 · 2 6 Polarization P3330 Exp Optics FA’2016 Exercises Ex1: Check that HLP and VLP are orthogonal as well as RCP and LCP. Q: What does it mean? A: can use either as a basis to represent arbitrary polarization! Ex2: How to obtain the light intensity from its Jones vector (if in vacuum)? Ax 2 2 J0 J =[Ax⇤ Ay⇤] = Ax + Ay · Ay | | | | 7 Polarization P3330 Exp Optics FA’2016 Jones matrix (don’t work with unpolarized light!) Normal modes: TJ = µJ 8 Polarization P3330 Exp Optics FA’2016 Combining polarization devices & tilt Simply multiply the matrices in the reverse order: T1 T2 T3 T = T3T2T1 If polarization device is rotated, use: Proof: using , we get 9 Polarization P3330 Exp Optics FA’2016 Linear polarizer Linear polarizer in x-direction A polarizer rotated by angle q 10 Polarization P3330 Exp Optics FA’2016 Polarization retarders or wave plates These devices do not affect one polarization component (fast axis) but add a retarding phase to the other component (slow axis). -
Use of Spectroscopic Ellipsometry and Modeling in Determining Composition and Thickness of Barium Strontium Titanate Thin-Films
Use of Spectroscopic Ellipsometry and Modeling in Determining Composition and Thickness of Barium Strontium Titanate Thin-Films A Thesis Submitted to the Faculty of Drexel University by Dominic G. Bruzzese III in partial fulfillment of the requirements for the degree of MS in Materials Science and Engineering June 2010 c Copyright June 2010 Dominic G. Bruzzese III. All Rights Reserved. Acknowledgements I would like to acknowledge the guidance and motivation I received from my advi- sor Dr. Jonathan Spanier not just during my thesis but for my entire stay at Drexel University. Eric Gallo for his help as my graduate student mentor and always making himself available to help me with everything from performing an experiment to ana- lyzing some result, he has been an immeasurable resource. Keith Fahnestock and the Natural Polymers and Photonics Group under the direction of Dr. Caroline Schauer for allowing the use of their ellipsometer, without which this work would not have been possible. I would like to thank everyone in the MesoMaterials Laboratory, espe- cially Stephen Nonenmann, Stephanie Johnson, Guannan Chen, Christopher Hawley, Brian Beatty, Joan Burger, and Andrew Akbasheu for help with experiments, as well as Oren Leffer and Terrence McGuckin for enlightening discussions. Claire Weiss and Dr. Pamir Alpay at the University of Connecticut have both contributed much to the the field and I am grateful for their work; also Claire produced the MOSD samples on which much of the characterization and modeling was done. Dr. Melanie Cole and the Army Research Office and Dr. Marc Ulrich for funding the project under W911NF-08-0124 and W911NF-08-0067. -
Ellipsometry
AALBORG UNIVERSITY Institute of Physics and Nanotechnology Pontoppidanstræde 103 - 9220 Aalborg Øst - Telephone 96 35 92 15 TITLE: Ellipsometry SYNOPSIS: This project concerns measurement of the re- fractive index of various materials and mea- PROJECT PERIOD: surement of the thickness of thin films on sili- September 1st - December 21st 2004 con substrates by use of ellipsometry. The el- lipsometer used in the experiments is the SE 850 photometric rotating analyzer ellipsome- ter from Sentech. THEME: After an introduction to ellipsometry and a Detection of Nanostructures problem description, the subjects of polar- ization and essential ellipsometry theory are covered. PROJECT GROUP: The index of refraction for silicon, alu- 116 minum, copper and silver are modelled us- ing the Drude-Lorentz harmonic oscillator model and afterwards measured by ellipsom- etry. The results based on the measurements GROUP MEMBERS: show a tendency towards, but are not ade- Jesper Jung quately close to, the table values. The mate- Jakob Bork rials are therefore modelled with a thin layer of oxide, and the refractive indexes are com- Tobias Holmgaard puted. This model yields good results for the Niels Anker Kortbek refractive index of silicon and copper. For aluminum the result is improved whereas the result for silver is not. SUPERVISOR: The thickness of a thin film of SiO2 on a sub- strate of silicon is measured by use of ellip- Kjeld Pedersen sometry. The result is 22.9 nm which deviates from the provided information by 6.5 %. The thickness of two thick (multiple wave- NUMBERS PRINTED: 7 lengths) thin polymer films are measured. The polymer films have been spin coated on REPORT PAGE NUMBER: 70 substrates of silicon and the uniformities of the surfaces are investigated. -
A Dissertation Entitled Spectroscopic Ellipsometry Studies of Thin Film Si
A Dissertation entitled Spectroscopic Ellipsometry Studies of Thin Film Si:H Materials in Photovoltaic Applications from Infrared to Ultraviolet by Laxmi Karki Gautam Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics _________________________________________ Dr. Nikolas J. Podraza, Committee Chair _________________________________________ Dr. Robert W. Collins, Committee Member _________________________________________ Dr. Randall Ellingson, Committee Member _________________________________________ Dr. Song Cheng, Committee Member _________________________________________ Dr. Rashmi Jha, Committee Member _________________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo May, 2016 Copyright 2016, Laxmi Karki Gautam This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Spectroscopic Ellipsometry Studies of Thin Film Si:H Materials in Photovoltaic Applications from Infrared to Ultraviolet by Laxmi Karki Gautam Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics The University of Toledo May 2016 Optimization of thin film photovoltaics (PV) relies on the capability for characterizing the optoelectronic and structural properties of each layer in the device over large areas and correlating these properties with device performance. This work builds heavily upon that done previously by us, our collaborators, and other researchers. It provides the next step in data analyses, particularly that involving study of films in device configurations maintaining the utmost sensitivity within those same device structures. In this Dissertation, the component layers of thin film hydrogenated silicon (Si:H) solar cells on rigid substrate materials have been studied by real time spectroscopic ellipsometry (RTSE) and ex situ spectroscopic ellipsometry (SE). -
1. Introduction & Theory
1. Introduction & Theory Neha Singh October 2010 Course Overview Day 1: Day 2: Introduction and Theory Genosc Layer Transparent Films Absorbing Films Microstructure – EMA If time permits: – Surface roughness Non-idealities – Grading (Simple and Ultra thin films function-based ITO) Uniqueness test – Thickness non-uniformity UV Absorption Review – Point-by-point fit Actual Samples © 2010, All Rights Reserved 2 Introduction & Theory Light Materials (optical constants) Interaction between light and materials Ellipsometry Measurements Data Analysis © 2010, All Rights Reserved 3 Light Electromagnetic Plane Wave From Maxwell’s equations we can describe a plane wave ⎛ 2π ⎞ E(z,t) = E0 sin⎜ − (z − vt) + ξ ⎟ ⎝ λ ⎠ Amplitude Amplitude arbitraryarbitrary phase phase X Wavelength Wavelength VelocityVelocity λ Electric field E(z,t) Y Z Direction Magnetic field, B(z,t) of propagation © 2010, All Rights Reserved 4 Intensity and Polarization Intensity = “Size” of Electric field. I ∝ E 2 Polarization = “Shape” of Electric field travel. Different Size Y •Y E More Intense Less (Intensity) Intense E Same Shape! X (Polarization) •X © 2010, All Rights Reserved 5 What is Polarization? Describes how Electric Field travels through space and time. X wave1 Y E wave2 Z © 2010, All Rights Reserved 6 Describing Polarized Light Jones Vector Stokes Vector Describe polarized light Describe any light beam with amplitude & phase. as vector of intensity ⎡S ⎤ ⎡ E2 + E2 ⎤ iϕx 0 x0 y0 ⎡Ex ⎤ ⎡E0xe ⎤ ⎢ ⎥ ⎢ 2 2 ⎥ = S1 ⎢ Ex0 −Ey0 ⎥ ⎢ ⎥ ⎢ iϕy ⎥ ⎢ ⎥ = E E e ⎢ ⎥ ⎢ ⎥ ⎣ y ⎦ ⎣⎢ 0y ⎦⎥ S2 2Ex0Ey0 cosΔ ⎢ ⎥ ⎢ ⎥ ⎣S3 ⎦ ⎣⎢2Ex0Ey0 sinΔ⎦⎥ © 2010, All Rights Reserved 7 Light-Material Interaction velocity & c wavelength vary v = in different n materials n = 1 •n = 2 Frequency remains constant v υ = λ © 2010, All Rights Reserved What are Optical Constants n , k Describe how materials and light interact. -
Ellipsometric Characterization of Silicon and Carbon Junctions for Advanced Electronics Alexander G
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research from Electrical & Computer Engineering, Department of Electrical & Computer Engineering Winter 12-7-2015 Ellipsometric Characterization of Silicon and Carbon Junctions for Advanced Electronics Alexander G. Boosalis University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/elecengtheses Part of the Electromagnetics and Photonics Commons, and the Semiconductor and Optical Materials Commons Boosalis, Alexander G., "Ellipsometric Characterization of Silicon and Carbon Junctions for Advanced Electronics" (2015). Theses, Dissertations, and Student Research from Electrical & Computer Engineering. 68. http://digitalcommons.unl.edu/elecengtheses/68 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ELLIPSOMETRIC CHARACTERIZATION OF SILICON AND CARBON JUNCTIONS FOR ADVANCED ELECTRONICS by Alexander George Boosalis A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Electrical Engineering Under the Supervision of Professors Mathias Schubert and Tino Hofmann Lincoln, Nebraska December, 2015 ELLIPSOMETRIC CHARACTERIZATION OF SILICON AND CARBON JUNCTIONS FOR ADVANCED ELECTRONICS Alexander George Boosalis, Ph.D. University of Nebraska, 2015 Advisers: Mathias Schubert, Tino Hofmann Ellipsometry has long been a valuable technique for the optical characterization of layered systems and thin films. While simple systems like epitaxial silicon diox- ide are easily characterized, complex systems of silicon and carbon junctions have proven difficult to analyze. -
3.3 Mueller Matrix Spectro-Polarimeter (MMSP)
Characterization of Turbid Media Using Stokes and Mueller-Matrix Polarimetry Manzoor Ahmad A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan. 2014 Dedicated to My Parents, Wife and sweet kids Muhammad Hassaan and Muhammad Abdullah, my inspirations ii Declaration I hereby declare that the work contained in this thesis and the intellectual content of this thesis are the product of my own work. This thesis has not been previously published in any form nor does it contain any verbatim of the published resources which could be treated as infringement of the international copyright law. I also declare that I do understand the terms ‘copyright’ and ‘plagiarism’, and that in case of any copyright violation or plagiarism found in this work, I will be held fully responsible of the consequences of any such violation. Signature : _______________________ Name: _____ Manzoor Ahmad___ Date: _______________________ Place: _______________________ iii Certificate This is to certify that the work contained in this thesis entitled: Characterization of turbid media using Stokes and Mueller-matrix polarimetry was carried out by Mr. Manzoor Ahmad, and in my opinion, it is fully adequate, in scope and quality, for the degree of Doctor in Philosophy. Dr Masroor Ikram Dr Shamaraz Firdous Supervisor Co-Supervisor Department of Physics and Applied National Institute of Laser and Mathematics, Pakistan Institute of Optoronics Engineering and Applied Sciences, Islamabad, Pakistan Islamabad, Pakistan Dr Shahid Qamar Head of Department, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan iv Acknowledgments First and foremost, I would like to articulate-my-heartedly thanks to Almighty Allah for His blessings in achieving my goals. -
Results from the QUIET Q-Band Observing Season COLUMBIA
Results from the QUIET Q-Band Observing Season Robert Nicolas Dumoulin Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Science COLUMBIA UNIVERSITY 2011 ©2011 Robert Nicolas Dumoulin All Rights Reserved Abstract Results from the QUIET Q-Band Observing Season Robert Nicolas Dumoulin The Q/U Imaging ExperimenT (QUIET) is a ground-based telescope located in the high Atacama Desert in Chile, and is designed to measure the polarization of the Cosmic Mi- crowave Background (CMB) in the Q and W frequency bands (43 and 95 GHz respec- tively) using coherent polarimeters. From 2008 October to 2010 December, data from more than 10,000 observing hours were collected, first with the Q-band receiver (2008 October to 2009 June) and then with the W-band receiver (until the end of the 2010 ob- serving season). The QUIET data analysis effort uses two independent pipelines, one consisting of a max- imum likelihood framework and the other consisting of a pseudo-C` framework. Both pipelines employ blind analysis methods, and each provides analysis of the data using large suites of null tests specific to the pipeline. Analysis of the Q-band receiver data was completed in November of 2010, confirming the only previous detection of the first acoustic peak of the EE power spectrum and setting competitive limits on the scalar-to- tensor ratio, r. In this dissertation, the results from the Q-band observing season using the maximum likelihood pipeline will be presented. Contents 1 The Cosmic Microwave Background 1 1.1 The Origins and Features of the CMB .