Journal of The Korean Astronomical Society (Preprint - no DOI assigned) 00: 1 25, 2013 December ISSN:1225-4614 Preprint∼ prepared by the author http://jkas.kas.org POLARIZATION AND POLARIMETRY: A REVIEW Sascha Trippe Department of Physics and Astronomy, Seoul National University, Seoul 151-742, South Korea E-mail:
[email protected] (Received 30 August 2013; Revised 17 December 2013; Accepted 28 December 2013) ABSTRACT Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the phys- ical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich- Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geom- etry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarime- try: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation. Key words : Polarization — Methods: polarimetric — Radiation mechanisms: general Contents 3.8.4. Faraday Depolarization . 12 3.8.5. Polarization Conversion . 13 1. INTRODUCTION ................. 2 3.8.6. Chandrasekhar-Fermi Effect . 13 2. PHYSICALBASICS ................ 2 4. OBSERVATIONS ................. 13 2.1. Electromagnetic Waves . 2 4.1.