Reconsidering the Stored-Program Concept

Total Page:16

File Type:pdf, Size:1020Kb

Reconsidering the Stored-Program Concept Reconsidering the Stored-Program Concept Thomas Haigh University of Wisconsin–Milwaukee Mark Priestley Crispin Rope The first in a three-part series appearing in IEEE Annals, this article gives a historical explanation of the endemic confusion surrounding the stored-program concept. After a detailed investigation of the history of this idea, the authors propose three more precisely defined alternatives to capture specific aspects of the new approach to computing introduced in 1945 by John von Neumann and his collaborators. It is a truth universally agreed that implemen- concept.” Historians almost invariably point tation of the “stored program concept” in the to a single document as the first publication late 1940s was the most important dividing to describe the concept and as the direct line in computer history, separating modern source of inspiration for the architecture of computers from their less evolved predeces- subsequent computer projects. That docu- sors. Yet, as Doron Swade recently noted, we ment is the “First Draft of a Report on the do not really agree on why this should be the EDVAC” (hereafter simply the First Draft), cir- case. For years he “assumed that the signifi- culated under the name of John von Neu- cance of the stored program must be self- mann in 1945.2 Although the true balance of evident” and attributed his own confusion to credit for the ideas contained in this docu- “a deficiency of understanding” or to “some ment has been widely and heatedly debated, lack” in his computer science education, its central importance to the development until finally he “became bold and began modern computing has not.3 asking” among computer historians and pio- We look at initial conceptions of the neers what it actually was. Their answers were advantages and crucial features of the new “all different,” with the question of whether approach to computer design put forward in “the primary benefit was one of principle or the First Draft, which scholars treat as the first practice frustratingly blurred.” Swade con- and most influential statement of the con- cluded that, cept. We also identify the origins of the phrase “stored program,” which came some Therewasonefeatureofalltheresponses years later, and its extension by early com- about which there was complete agreement: puter historians to the “stored program no one challenged the status of the stored pro- concept.” gram as the defining feature of the modern Having shown that this historical evolu- digital electronic computer.... While the rea- tion left the terms hopelessly overloaded sons given for this were different, none dis- with contradictory meanings, to which counted its seminal significance. But it seems Swade’s confusion was an appropriate and that we struggle when required to articulate its insightful response, we return to the text of significance in simple terms and the apparent the First Draft to identify three distinct but mix of principle and practice frustrates intertwined clusters of influential ideas in the clarity.1 report: the modern code paradigm, the von Neumann architecture paradigm, and the In this article, we respond by historicizing EDVAC hardware paradigm. These were the “stored program” and “stored program sometimes implemented independently in 4 IEEE Annals of the History of Computing Published by the IEEE Computer Society 1058-6180/14/$31.00 c 2014 IEEE the machines of the 1940s, and although all scientific communities grew, was an exem- three were standard features of computers of plary technical accomplishment reflecting a the mid-1950s, their fates have subsequently new approach—the “concrete” paradigm. In diverged again. We believe that reliance by its initial formulation it might be clumsy or historians on the term “stored program con- incomplete, but it held sufficient promise to cept” as shorthand for the content of the attract others to build on its model to extend entire 1945 EDVAC design has done more to itandapplyittonewkindsofproblem.The hurt our understanding than to help it. original paradigmatic accomplishment was, Our own attention turned to this question in Kuhn’s term, “articulated” through this as we investigated modifications made to later work to become something almost ENIAC in early 1948 by a team working unrecognizable. For example, later genera- closely with John von Neumann. These mod- tions of scientists learned Newton’s laws of ifications incorporated key elements of the motion in a form (and using a version of cal- new approach to computer design and pro- culus) quite different from those familiar to gramming associated with EDVAC. Thus con- Newton himself. verted, ENIAC ran a complex program Focusing on the First Draft as a paradigm written in the new style, including condi- thussteersustowardtwoimportantissues. tional branches, data reads from calculated The first is that this core sense of paradigm addresses, and a subroutine called from more helps us to understand the enormous power than one point in the code. This program was that the First Draft exerted over the subse- developed using the methodology and flow quent development of computing. The sec- diagramming notation described by Herman ond, less obvious, is that the First Draft only Goldstine and von Neumann in their seminal became a paradigm retroactively. In 1945 it series of reports on “Planning and Coding of wasjustadocument.Asotherstookupits Problems for an Electronic Computing ideas, implemented them, and extended Instrument” issued around this time.4 them,itcametofunctionasaparadigm.By Dispelling some previous confusion, we the 1950s, its paradigmatic authority was have established that all of this was com- becoming clear. Some of the ideas contained pleted before Manchester University’s “Baby” within it were discarded, some were reformu- (known more formally as the Small-Scale lated, and others were added. The treatment Experimental Machine) executed what is usu- of its ideas in textbooks and papers has con- ally called the world’s first stored program in tinued to evolve. Understanding what was so the summer of the same year. It would be originally so important about the First Draft well over a year until EDSAC became the first requires us to strip away some of these later purpose-built stored-program computer to ideas and to ground our analysis in the real- enter regular operation and run programs of ities of 1940s computer practice. complexity comparable to ENIAC’s. ENIAC still differed from purpose-built, full-scale What Did von Neumann Mean By stored program computers in several impor- “Stored Program”? tant ways. In particular, its electronic storage That turns out to be a trick question, unfortu- remained rather small, and program instruc- nately. The “First Draft of a Report on the tions were stored along with constant data in EDVAC” does not, despite the role it has been a high-speed read-only memory.5 Should assigned in later historical work, function ENIAC therefore be considered the first well as a standards document to rigorously operational stored-program computer? Well, define the concept of “stored program.” To it all depends on what we mean by “stored begin with, the word “program” never program.” So before returning to ENIAC in appears in the draft. Von Neumann consis- the next article in this series, we will clarify tently preferred “code” to “program” and the ideas associated with this term and the wrote of “memory” rather than “storage.” process by which they evolved. Indeed, if someone with no prior exposure to To understand the role played by the First the topic was handed this document and Draft in the subsequent development of com- asked to encapsulate its big idea about the puting, we are relying on the notion of a handling of instructions in a single phrase, he “paradigm” introduced by historian and phi- or she would be much more likely to derive losopher of science Thomas Kuhn in his clas- “remembered code” than “stored program.” sic Structure of Scientific Revolutions.6 Kuhn Our current attachment to the term believed that the most fundamental sense of “stored program” as a description for com- paradigm, the seed around which mighty puters built along lines proposed for EDVAC January–March 2014 5 Reconsidering the Stored-Program Concept thus needs some historical explanation. Read new breed of computers came from J. Presper literally, the term conveys very little. Any Eckert and John Mauchly. As well as design- program that can be executed by a computer ing ENIAC, they had created at least some of must be stored in some form or other. The the ideas included in the First Draft and in First Draft itself observed that “instructions 1946 founded a company to commercialize a must be given in some form which the device similar design. In 1946 a summer school was can sense: Punched into a system of punch- held at the University of Pennsylvania, then cards or on teletype tape, magnetically housing both ENIAC and the project to build impressed on steel tape or wire, photographi- the EDVAC. Historians have credited the cally impressed on motion picture film, wired event as a crucial vector for the spread of the into one or more fixed or exchangeable plug- stored-program concept. But what made boards—this list being by no means necessa- EDVAC so appealing as a model? rily complete.”7 During his lecture, Eckert retraced for the The report was a speculative and argumen- audience the process he and his colleagues tative description of the design of a particular had gone through to design the EDVAC as a machine, not an abstract description of a reaction to the shortcomings of ENIAC. His new class of machines. It offered great detail argument for internal program storage was in some areas and very little in others. In pragmatic. It would reduce set up time, as “in other words, it is only when armed with the the EDVAC there will be no cords, no plugs, knowledge of later developments that we and few switches.
Recommended publications
  • Early Stored Program Computers
    Stored Program Computers Thomas J. Bergin Computing History Museum American University 7/9/2012 1 Early Thoughts about Stored Programming • January 1944 Moore School team thinks of better ways to do things; leverages delay line memories from War research • September 1944 John von Neumann visits project – Goldstine’s meeting at Aberdeen Train Station • October 1944 Army extends the ENIAC contract research on EDVAC stored-program concept • Spring 1945 ENIAC working well • June 1945 First Draft of a Report on the EDVAC 7/9/2012 2 First Draft Report (June 1945) • John von Neumann prepares (?) a report on the EDVAC which identifies how the machine could be programmed (unfinished very rough draft) – academic: publish for the good of science – engineers: patents, patents, patents • von Neumann never repudiates the myth that he wrote it; most members of the ENIAC team contribute ideas; Goldstine note about “bashing” summer7/9/2012 letters together 3 • 1.0 Definitions – The considerations which follow deal with the structure of a very high speed automatic digital computing system, and in particular with its logical control…. – The instructions which govern this operation must be given to the device in absolutely exhaustive detail. They include all numerical information which is required to solve the problem…. – Once these instructions are given to the device, it must be be able to carry them out completely and without any need for further intelligent human intervention…. • 2.0 Main Subdivision of the System – First: since the device is a computor, it will have to perform the elementary operations of arithmetics…. – Second: the logical control of the device is the proper sequencing of its operations (by…a control organ.
    [Show full text]
  • Computer Development at the National Bureau of Standards
    Computer Development at the National Bureau of Standards The first fully operational stored-program electronic individual computations could be performed at elec- computer in the United States was built at the National tronic speed, but the instructions (the program) that Bureau of Standards. The Standards Electronic drove these computations could not be modified and Automatic Computer (SEAC) [1] (Fig. 1.) began useful sequenced at the same electronic speed as the computa- computation in May 1950. The stored program was held tions. Other early computers in academia, government, in the machine’s internal memory where the machine and industry, such as Edvac, Ordvac, Illiac I, the Von itself could modify it for successive stages of a compu- Neumann IAS computer, and the IBM 701, would not tation. This made a dramatic increase in the power of begin productive operation until 1952. programming. In 1947, the U.S. Bureau of the Census, in coopera- Although originally intended as an “interim” com- tion with the Departments of the Army and Air Force, puter, SEAC had a productive life of 14 years, with a decided to contract with Eckert and Mauchly, who had profound effect on all U.S. Government computing, the developed the ENIAC, to create a computer that extension of the use of computers into previously would have an internally stored program which unknown applications, and the further development of could be run at electronic speeds. Because of a demon- computing machines in industry and academia. strated competence in designing electronic components, In earlier developments, the possibility of doing the National Bureau of Standards was asked to be electronic computation had been demonstrated by technical monitor of the contract that was issued, Atanasoff at Iowa State University in 1937.
    [Show full text]
  • Simon E. Gluck Collection of Photographs of EDVAC and MSAC Computers 1990.232
    Simon E. Gluck collection of photographs of EDVAC and MSAC computers 1990.232 This finding aid was produced using ArchivesSpace on September 19, 2021. Description is written in: English. Describing Archives: A Content Standard Audiovisual Collections PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Simon E. Gluck collection of photographs of EDVAC and MSAC computers 1990.232 Table of Contents Summary Information .................................................................................................................................... 3 Biographical Note .......................................................................................................................................... 3 Scope and Content ......................................................................................................................................... 4 Administrative Information ............................................................................................................................ 4 Related Materials ........................................................................................................................................... 5 Controlled Access Headings .......................................................................................................................... 5 Additonal Extent Statement ........................................................................................................................... 5 - Page 2 - Simon E. Gluck collection
    [Show full text]
  • Who Did What? Engineers Vs Mathematicians Title Page America Vs Europe Ideas Vs Implementations Babbage Lovelace Turing
    Who did what? Engineers vs Mathematicians Title Page America vs Europe Ideas vs Implementations Babbage Lovelace Turing Flowers Atanasoff Berry Zuse Chandler Broadhurst Mauchley & Von Neumann Wilkes Eckert Williams Kilburn SlideSlide 1 1 SlideSlide 2 2 A decade of real progress What remained to be done? A number of different pioneers had during the 1930s and 40s Memory! begun to make significant progress in developing automatic calculators (computers). Thanks (almost entirely) to A.M. Turing there was a complete theoretical understanding of the elements necessary to produce a Atanasoff had pioneered the use of electronics in calculation stored program computer – or Universal Turing Machine. Zuse had mad a number of theoretical breakthroughs Not for the first time, ideas had outstripped technology. Eckert and Mauchley (with JvN) had produced ENIAC and No-one had, by the end of the war, developed a practical store or produced the EDVAC report – spreading the word memory. Newman and Flowers had developed the Colossus It should be noted that not too many people were even working on the problem. SlideSlide 3 3 SlideSlide 4 4 The players Controversy USA: Eckert, Mauchley & von Neumann – EDVAC Fall out over the EDVAC report UK: Maurice Wilkes – EDSAC Takeover of the SSEM project by Williams (Kilburn) UK: Newman – SSEM (what was the role of Colossus?) Discord on the ACE project and the departure of Turing UK: Turing - ACE EDSAC alone was harmonious We will concentrate for a little while on the SSEM – the winner! SlideSlide 5 5 SlideSlide 6 6 1 Newman & technology transfer: Secret Technology Transfer? the claim Donald Michie : Cryptanalyst An enormous amount was transferred in an extremely seminal way to the post war developments of computers in Britain.
    [Show full text]
  • Hereby the Screen Stands in For, and Thereby Occludes, the Deeper Workings of the Computer Itself
    John Warnock and an IDI graphical display unit, University of Utah, 1968. Courtesy Salt Lake City Deseret News . 24 doi:10.1162/GREY_a_00233 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/GREY_a_00233 by guest on 27 September 2021 The Random-Access Image: Memory and the History of the Computer Screen JACOB GABOURY A memory is a means for displacing in time various events which depend upon the same information. —J. Presper Eckert Jr. 1 When we speak of graphics, we think of images. Be it the windowed interface of a personal computer, the tactile swipe of icons across a mobile device, or the surreal effects of computer-enhanced film and video games—all are graphics. Understandably, then, computer graphics are most often understood as the images displayed on a computer screen. This pairing of the image and the screen is so natural that we rarely theorize the screen as a medium itself, one with a heterogeneous history that develops in parallel with other visual and computa - tional forms. 2 What then, of the screen? To be sure, the computer screen follows in the tradition of the visual frame that delimits, contains, and produces the image. 3 It is also the skin of the interface that allows us to engage with, augment, and relate to technical things. 4 But the computer screen was also a cathode ray tube (CRT) phosphorescing in response to an electron beam, modified by a grid of randomly accessible memory that stores, maps, and transforms thousands of bits in real time. The screen is not simply an enduring technique or evocative metaphor; it is a hardware object whose transformations have shaped the ma - terial conditions of our visual culture.
    [Show full text]
  • P the Pioneers and Their Computers
    The Videotape Sources: The Pioneers and their Computers • Lectures at The Compp,uter Museum, Marlboro, MA, September 1979-1983 • Goal: Capture data at the source • The first 4: Atanasoff (ABC), Zuse, Hopper (IBM/Harvard), Grosch (IBM), Stibitz (BTL) • Flowers (Colossus) • ENIAC: Eckert, Mauchley, Burks • Wilkes (EDSAC … LEO), Edwards (Manchester), Wilkinson (NPL ACE), Huskey (SWAC), Rajchman (IAS), Forrester (MIT) What did it feel like then? • What were th e comput ers? • Why did their inventors build them? • What materials (technology) did they build from? • What were their speed and memory size specs? • How did they work? • How were they used or programmed? • What were they used for? • What did each contribute to future computing? • What were the by-products? and alumni/ae? The “classic” five boxes of a stored ppgrogram dig ital comp uter Memory M Central Input Output Control I O CC Central Arithmetic CA How was programming done before programming languages and O/Ss? • ENIAC was programmed by routing control pulse cables f ormi ng th e “ program count er” • Clippinger and von Neumann made “function codes” for the tables of ENIAC • Kilburn at Manchester ran the first 17 word program • Wilkes, Wheeler, and Gill wrote the first book on programmiidbBbbIiSiing, reprinted by Babbage Institute Series • Parallel versus Serial • Pre-programming languages and operating systems • Big idea: compatibility for program investment – EDSAC was transferred to Leo – The IAS Computers built at Universities Time Line of First Computers Year 1935 1940 1945 1950 1955 ••••• BTL ---------o o o o Zuse ----------------o Atanasoff ------------------o IBM ASCC,SSEC ------------o-----------o >CPC ENIAC ?--------------o EDVAC s------------------o UNIVAC I IAS --?s------------o Colossus -------?---?----o Manchester ?--------o ?>Ferranti EDSAC ?-----------o ?>Leo ACE ?--------------o ?>DEUCE Whirl wi nd SEAC & SWAC ENIAC Project Time Line & Descendants IBM 701, Philco S2000, ERA..
    [Show full text]
  • John William Mauchly
    John William Mauchly Born August 30, 1907, Cincinnati, Ohio; died January 8, 1980, Abington, Pa.; the New York Times obituary (Smolowe 1980) described Mauchly as a “co-inventor of the first electronic computer” but his accomplishments went far beyond that simple description. Education: physics, Johns Hopkins University, 1929; PhD, physics, Johns Hopkins University, 1932. Professional Experience: research assistant, Johns Hopkins University, 1932-1933; professor of physics, Ursinus College, 1933-1941; Moore School of Electrical Engineering, 1941-1946; member, Electronic Control Company, 1946-1948; president, Eckert-Mauchly Computer Company, 1948-1950; Remington-Rand, 1950-1955; director, Univac Applications Research, Sperry-Rand 1955-1959; Mauchly Associates, 1959-1980; Dynatrend Consulting Company, 1967-1980. Honors and Awards: president, ACM, 1948-1949; Howard N. Potts Medal, Franklin Institute, 1949; John Scott Award, 1961; Modern Pioneer Award, NAM, 1965; AMPS Harry Goode Memorial Award for Excellence, 1968; IEEE Emanual R. Piore Award, 1978; IEEE Computer Society Pioneer Award, 1980; member, Information Processing Hall of Fame, Infornart, Dallas, Texas, 1985. Mauchly was born in Cincinnati, Ohio, on August 30, 1907. He attended Johns Hopkins University initially as an engineering student but later transferred into physics. He received his PhD degree in physics in 1932 and the following year became a professor of physics at Ursinus College in Collegeville, Pennsylvania. At Ursinus he was well known for his excellent and dynamic teaching, and for his research in meteorology. Because his meteorological work required extensive calculations, he began to experiment with alternatives to mechanical tabulating equipment in an effort to reduce the time required to solve meteorological equations.
    [Show full text]
  • The Manchester University "Baby" Computer and Its Derivatives, 1948 – 1951”
    Expert Report on Proposed Milestone “The Manchester University "Baby" Computer and its Derivatives, 1948 – 1951” Thomas Haigh. University of Wisconsin—Milwaukee & Siegen University March 10, 2021 Version of citation being responded to: The Manchester University "Baby" Computer and its Derivatives, 1948 - 1951 At this site on 21 June 1948 the “Baby” became the first computer to execute a program stored in addressable read-write electronic memory. “Baby” validated the widely used Williams- Kilburn Tube random-access memories and led to the 1949 Manchester Mark I which pioneered index registers. In February 1951, Ferranti Ltd's commercial Mark I became the first electronic computer marketed as a standard product ever delivered to a customer. 1: Evaluation of Citation The final wording is the result of several rounds of back and forth exchange of proposed drafts with the proposers, mediated by Brian Berg. During this process the citation text became, from my viewpoint at least, far more precise and historically reliable. The current version identifies several distinct contributions made by three related machines: the 1948 “Baby” (known officially as the Small Scale Experimental Machine or SSEM), a minimal prototype computer which ran test programs to prove the viability of the Manchester Mark 1, a full‐scale computer completed in 1949 that was fully designed and approved only after the success of the “Baby” and in turn served as a prototype of the Ferranti Mark 1, a commercial refinement of the Manchester Mark 1 of which I believe 9 copies were sold. The 1951 date refers to the delivery of the first of these, to Manchester University as a replacement for its home‐built Mark 1.
    [Show full text]
  • 1. Types of Computers Contents
    1. Types of Computers Contents 1 Classes of computers 1 1.1 Classes by size ............................................. 1 1.1.1 Microcomputers (personal computers) ............................ 1 1.1.2 Minicomputers (midrange computers) ............................ 1 1.1.3 Mainframe computers ..................................... 1 1.1.4 Supercomputers ........................................ 1 1.2 Classes by function .......................................... 2 1.2.1 Servers ............................................ 2 1.2.2 Workstations ......................................... 2 1.2.3 Information appliances .................................... 2 1.2.4 Embedded computers ..................................... 2 1.3 See also ................................................ 2 1.4 References .............................................. 2 1.5 External links ............................................. 2 2 List of computer size categories 3 2.1 Supercomputers ............................................ 3 2.2 Mainframe computers ........................................ 3 2.3 Minicomputers ............................................ 3 2.4 Microcomputers ........................................... 3 2.5 Mobile computers ........................................... 3 2.6 Others ................................................. 4 2.7 Distinctive marks ........................................... 4 2.8 Categories ............................................... 4 2.9 See also ................................................ 4 2.10 References
    [Show full text]
  • Issue 3 January 2005 Ferranti Mercury X1 Index B3 Sales of Ferranti
    Issue 3 January 2005 Ferranti Mercury X1 Index B3 Sales of Ferranti Mercury Computers etc D1 Design history and designers References Delivery etc Issue 3 January 2005 B3 Sales of Ferranti Mercury computers. Information mostly taken from: The Ferranti Computer Department – an informal history. B B Swann, 1975. Typescript for private circulation only. See the National Archive for the History of Computing, catalogue number NAHC/FER/C30. No. customer date del’d scientific applic’s. Commercial applic’s 1 Norwegian Defence Research Aug. ’57 Atomic energy work - Est., Kjeller. 2 Manchester University Oct. ’57 Research & service work - Transferred to University of Sheffield 1963 3 French Atomic Energy Nov. ’57 Atomic energy work - Authority, Saclay. 4 United Kingdom Atomic Feb. ’58 Atomic energy work - Energy Authority, Harwell. 5 RAF Meteorological Office, Sept. ’58 Weather forecasting - Dunstable. 6 Council for European Nuclear Jun. ’58 Atomic energy work - Research, Geneva. 7 London University. Oct. ’58 Research & service work - 8 United Kingdom Atomic Oct. ’58 Atomic energy work Energy Authority, Risley. 9 Oxford University. Nov. ’58 Research & service work - Forestry (large Dbs) Replaced by KDF9 10 Shell International Petroleum Jan. ’59 Linear programming. Sales analysis Co. Ltd., London. 11 Royal Aircraft Establishment, Mar. ’59 Aircraft calculations - Farnborough. 12 ICI Ltd., Central Instruments Jun. ’59 Chemical process analysis - Division, Reading. 13 Swedish Atomic Energy Jul. ’59 Atomic energy work - Authority, Stockholm. 14 Belgian Atomic Energy Sept. ’59 Atomic energy work - Authority, Mol. 15 The General Electric Co. Ltd., Dec. ’59 Atomic energy work - Erith. and machine design. 16 Metropolitan-Vickers Electrical Oct. ’60 Transformer design - Co.
    [Show full text]
  • A Large Routine
    A large routine Freek Wiedijk It is not widely known, but already in June 1949∗ Alan Turing had the main concepts that still are the basis for the best approach to program verification known today (and for which Tony Hoare developed a logic in 1969). In his three page paper Checking a large routine, Turing describes how to verify the correctness of a program that calculates the factorial function by repeated additions. He both shows how to use invariants to establish the correctness of this program, as well as how to use a variant to establish termination. In the paper the program is only presented as a flow chart. A modern C rendering is: int fac (int n) { int s, r, u, v; for (u = r = 1; v = u, r < n; r++) for (s = 1; u += v, s++ < r; ) ; return u; } Turing's paper seems not to have been properly appreciated at the time. At the EDSAC conference where Turing presented the paper, Douglas Hartree criticized that the correctness proof sketched by Turing should not be called inductive. From a modern point of view this is clearly absurd. Marc Schoolderman first told me about this paper (and in his master's thesis used the modern Why3 tool of Jean-Christophe Filli^atreto make Turing's paper fully precise; he also wrote the above C version of Turing's program). He then challenged me to speculate what specific computer Turing had in mind in the paper, and what the actual program for that computer might have been. My answer is that the `EPICAC'y of this paper probably was the Manchester Mark 1.
    [Show full text]
  • John W. Mauchly Papers Ms
    John W. Mauchly papers Ms. Coll. 925 Finding aid prepared by Holly Mengel. Last updated on April 27, 2020. University of Pennsylvania, Kislak Center for Special Collections, Rare Books and Manuscripts 2015 September 9 John W. Mauchly papers Table of Contents Summary Information....................................................................................................................................3 Biography/History..........................................................................................................................................4 Scope and Contents....................................................................................................................................... 6 Administrative Information........................................................................................................................... 7 Related Materials........................................................................................................................................... 8 Controlled Access Headings..........................................................................................................................8 Collection Inventory.................................................................................................................................... 10 Series I. Youth, education, and early career......................................................................................... 10 Series II. Moore School of Electrical Engineering, University of Pennsylvania.................................
    [Show full text]