John W. Mauchly Papers Ms

Total Page:16

File Type:pdf, Size:1020Kb

John W. Mauchly Papers Ms John W. Mauchly papers Ms. Coll. 925 Finding aid prepared by Holly Mengel. Last updated on April 27, 2020. University of Pennsylvania, Kislak Center for Special Collections, Rare Books and Manuscripts 2015 September 9 John W. Mauchly papers Table of Contents Summary Information....................................................................................................................................3 Biography/History..........................................................................................................................................4 Scope and Contents....................................................................................................................................... 6 Administrative Information........................................................................................................................... 7 Related Materials........................................................................................................................................... 8 Controlled Access Headings..........................................................................................................................8 Collection Inventory.................................................................................................................................... 10 Series I. Youth, education, and early career......................................................................................... 10 Series II. Moore School of Electrical Engineering, University of Pennsylvania.................................. 31 Series III. Eckert-Mauchly partnership................................................................................................. 48 - Page 2 - John W. Mauchly papers Summary Information Repository University of Pennsylvania: Kislak Center for Special Collections, Rare Books and Manuscripts Creator Mauchly, John W. (John William), 1907-1980 Title John W. Mauchly papers Call number Ms. Coll. 925 Date [inclusive] 1908-1980 Extent 37 linear feet (37 boxes) Language English Abstract John W. Mauchly (1907-1980) was a physicist, teacher, and a leader in the development of computers. With J. Presper Eckert, he invented the Electronic Numerical Integrator and Computer (ENIAC), the Electronic Discrete Variable Automatic Computer (EDVAC), the Binary Automatic Computer (BINAC), and the Universal Automatic Computer (UNIVAC). This first installment of Mauchly's papers documents Mauchly's youth, education, early career at Ursinus College, his work at the University of Pennsylvania Moore School of Electrical Engineering, his partnership with J. Presper Eckert, with whom he formed two companies, the Electronic Control Company (ECC) and the Eckert-Mauchly Computer Corporation (EMCC), and his work through 1959 with Remington Rand/Sperry Rand after its purchase of EMCC in 1950. Early work in programming, coding, compilers, routines and subroutines, and most importantly, the application of electronic computers in government, business, and industry, as well as the history of the computer, is well documented. Moreover, this collection provides a glimpse into the - Page 3 - John W. Mauchly papers personal life of the remarkable man behind this work through his interactions with family, friends, and colleagues. Cite as: John W. Mauchly papers, 1908-1980, Ms. Coll. 925, Kislak Center for Special Collections, Rare Books and Manuscripts, University of Pennsylvania Biography/History John W. Mauchly was born on August 30, 1907, to Sebastian and Rachel (Scheidermantel) Mauchly in Cincinnati, Ohio. He moved with his parents and sister, Helen Elizabeth (Betty), at an early age to Chevy Chase, Maryland, when Sebastian Mauchly obtained a position at the Carnegie Institute of Washington as head of its Section of Terrestrial Electricity. As a youth, Mauchly was interested in science, and in particular with electricity, and was known to fix neighbors' electric systems at the age of 13 or 14. Mauchly attended E.V. Brown Elementary School in Chevy Chase and McKinley Technical High School in Washington, DC. At McKinley, Mauchly was extremely active in the debate team, was a member of the national honor society, and became editor-in-chief of the school's newspaper, Tech Life. After graduating from high school in 1925, he earned a scholarship to study engineering at Johns Hopkins University. He subsequently transferred to the Physics Department, and without completing his undergraduate degree, instead earned a Ph.D. in physics in 1932. From 1932 to 1933, Mauchly served as a research assistant at Johns Hopkins University where he concentrated on calculating energy levels of the formaldehyde spectrum. Mauchly's teaching career truly began in 1933 at Ursinus College where he was appointed head of the physics department, where he was, in fact, the only staff member. According to John Costello, Mauchly "became a campus celebrity--if not a faculty favorite--for the irreverent Professor Ho-Hum lectures he used to deliver on the last day of class before Christmas," (Costello, page 50). In addition to his teaching duties, Mauchly sought automated ways to manipulate weather data. After some experimentation on his own, he visited John V. Atanasoff, an Iowa State University professor and inventor of the Atanasoff-Berry Computer (ABC) which used vacuum tubes. Because the ABC machine was not fully electronic, Mauchly decided to continue his own research and experimentation. In the summer of 1941, Mauchly took a Defense Training Course for Electronics at the University of Pennsylvania Moore School of Electrical Engineering. There he met the lab instructor, J. Presper Eckert (1919-1995), with whom he would form a long-standing working partnership. Following the course, Mauchly was hired as an instructor of electrical engineering and in 1943, he was promoted to assistant - Page 4 - John W. Mauchly papers professor of electrical engineering. Following the outbreak of World War II, the United States Army Ordnance Department contracted the Moore School to build an electronic computer which, as proposed by Mauchly and Eckert, would accelerate the recomputation of artillery firing tables. In 1943, Mauchly and Eckert began building the ENIAC, Electronic Numerical Integrator and Computer, "an electronic machine to replace mechanical devices" (Costello, page 45). Mauchly has been described as the visionary and Eckert the engineering mastermind of Project PX, the name of the ENIAC during development. ENIAC was not completed until 1946, one year after the end of the war, and was first used by the U.S. Army at Aberdeen Proving Grounds in Maryland for ballistics testing in 1947. While still at Penn's Moore School, and even during the construction of ENIAC, Eckert and Mauchly were also working on the "next computer," the Electronic Discrete Variable Automatic Computer (EDVAC), which Mauchly describes as "the outcome of lengthy planning in which Eckert and [he] deliberately tried to overcome many problems of storage and control which were evident in the hasty 'state-of-the-art' ENIAC System," (Mauchly, Datamation). However, in 1946, Eckert and Mauchly resigned from Penn as a result of a patent dispute over "changes in the way in which ... contracts were administered at the University and changes which the University wished to make in the terms of [their] employment" (Mauchly, Resume). Together, they immediately formed the Electronic Control Company (ECC) which was later renamed the Eckert-Mauchly Computer Corporation (EMCC) when it was incorporated on December 22, 1947. During this period of Mauchly's career, he was denied security clearance which made his work difficult and resulted in his frequently working from home. Although the reasons for Mauchly's security clearance problems were never disclosed, Kay Mauchly suspected, based upon Mauchly's FBI file that it was because he subscribed to Consumer Reports which was declared communist-oriented, or because some members of his staff were considered security risks. Despite this challenge, Eckert and Mauchly introduced, in 1949, the Binary Automatic Computer (BINAC), which used magnetic tape rather than punched cards and stored computer programs internally. By 1950, the Universal Automatic Computer (UNIVAC) had been developed. In February 1950, EMCC was purchased by Remington Rand, and EMCC became a division of Rand. The UNIVAC went on the market in 1951 and is considered the first widely used commercial computer able to handle both numerical and alphabetical data. The first order for a UNIVAC came from the United States Bureau of the Census. In 1955, Remington Rand merged with Sperry Corporation and Mauchly became the head of the UNIVAC Applications Research Center (UARC), the UNIVAC division of the Sperry Rand Corporation. Applications research was a field for which Mauchly had long campaigned, and while heading UARC, Mauchly, along with his colleagues, developed C-10 programming code as well as many other "component parts for a commercially useful data processing device of high speed and general scope," (Mauchly, Resume). UNIVAC II was introduced in 1957. Documents within the John W. Mauchly papers indicate that Mauchly and Remington Rand/Sperry Rand did not always agree on the direction in which the company was headed, although productive work appears to have been achieved. In 1959, Mauchly left Sperry Rand and started Mauchly Associates, Inc. One of Mauchly Associates' notable achievements was the development of the Critical Path Method (CPM) which provided for automated
Recommended publications
  • Gerald Johnson, Irving Krick and Jerome Namias to Help Form Panel Discussion for UCSD Growth Conference
    Gerald Johnson, Irving Krick and Jerome Namias to help form Panel Discussion for UCSD Growth Conference May 26, 1963 A developer of the program to use nuclear explosives for peaceful, useful purposes., an exponent of weather control, and the chief of the U. S. Weather Bureau's Extended Forecast Branch will share one platform at the University of California, San Diego, conference, "The Impact of Science," June 13-14. In one of six significant discussions to be held at the session, the three will probe the role of the scientist in controlling our natural environment, in a panel to be held in UCSD's Sumner Auditorium at 10:00 a.m., June 14. The conference is one of seven sponsored by the University of California this year to mark the occasion of California's becoming the largest state in population. Gerald Johnson, Assistant to the Secretary of Defense for Atomic Energy will discuss "Project Plowshare: Engineering with Atomic Energy." He will be joined on the panel by Irving Krick, President of the Water Resources Development Corporation of Denver, and Jerome Namias, who has headed the U. S. Weather Bureau's Extended Forecast Branch since 1941. Dr. Krick's topic will be "Doing Something About the Weather." Namias will discuss "Can Man Control Climate?" It was under Dr. Johnson's guidance that Project Plowshare was established for exploring the possibility of using nuclear explosives for industrial and scientific purposes. During his assignment as Test Division Leader at the University of California's Lawrence Radiation Laboratory, the Test Division developed plans for and conducted the first underground nuclear explosion in 1957- It was this test which demonstrated that underground weapons testing could be accomplished with radioactive fallout eliminated.
    [Show full text]
  • Women in Computing History
    Women in Computing History Denise Gfirer ACM-W0) Co-Chair EMD Consulting Scotts Valley, California 95066 USA <[email protected]> Introduction Exciting inventions, innovative technology, human interac- tion, and intriguing politics fill computing history. However, the recorded history is mainly composed of male achieve- ments and involvements, even though women have played substantial roles. This situation is not unusual. Most science fields are notorious for excluding, undervaluing, or over- looking the accomplishments of their female scientists [1, 16, 17, 22]. As J.A.N. Lee points out, it is up to the histori- ans and others to remedy this imbalance (see this issue [14]). Some steps have been taken towards this goal through pub- lishing biographies on women in technology [2, 5, 6, 8, 10, 12, 13, 18, 20, 21, 23, 24], also see this issue [7], and through honoring the pioneers with various awards such as the GHC'97 Pioneering Awards(z) (Figure 1), the WITI Hall of Fame(3), and the AWC Lovelace Award(n). A few online sites Figure 1: Computer Science Pioneer Celebration, at the Grace Hopper contain biographies of women in technology, shown in Table Celebration of Women in Computing '97. Left to right: (Fran Allen, Ruzena Bajcsy, Adele Mildred Koss, Denise Gtirer, Anita Borg, Jean 1 below. However, even with these resources, many women Jennings Bartik, Judy Levenson Clapp, Thelma Estrin, Joyce Currie Little who have contributed significantly to computer science are (Courtesy Institute for Women in Technology, Palo Alto, California) still to be discovered. preprogrammed software for needed tasks (in particular word processing, email, and database access).
    [Show full text]
  • Early Stored Program Computers
    Stored Program Computers Thomas J. Bergin Computing History Museum American University 7/9/2012 1 Early Thoughts about Stored Programming • January 1944 Moore School team thinks of better ways to do things; leverages delay line memories from War research • September 1944 John von Neumann visits project – Goldstine’s meeting at Aberdeen Train Station • October 1944 Army extends the ENIAC contract research on EDVAC stored-program concept • Spring 1945 ENIAC working well • June 1945 First Draft of a Report on the EDVAC 7/9/2012 2 First Draft Report (June 1945) • John von Neumann prepares (?) a report on the EDVAC which identifies how the machine could be programmed (unfinished very rough draft) – academic: publish for the good of science – engineers: patents, patents, patents • von Neumann never repudiates the myth that he wrote it; most members of the ENIAC team contribute ideas; Goldstine note about “bashing” summer7/9/2012 letters together 3 • 1.0 Definitions – The considerations which follow deal with the structure of a very high speed automatic digital computing system, and in particular with its logical control…. – The instructions which govern this operation must be given to the device in absolutely exhaustive detail. They include all numerical information which is required to solve the problem…. – Once these instructions are given to the device, it must be be able to carry them out completely and without any need for further intelligent human intervention…. • 2.0 Main Subdivision of the System – First: since the device is a computor, it will have to perform the elementary operations of arithmetics…. – Second: the logical control of the device is the proper sequencing of its operations (by…a control organ.
    [Show full text]
  • Technical Details of the Elliott 152 and 153
    Appendix 1 Technical Details of the Elliott 152 and 153 Introduction The Elliott 152 computer was part of the Admiralty’s MRS5 (medium range system 5) naval gunnery project, described in Chap. 2. The Elliott 153 computer, also known as the D/F (direction-finding) computer, was built for GCHQ and the Admiralty as described in Chap. 3. The information in this appendix is intended to supplement the overall descriptions of the machines as given in Chaps. 2 and 3. A1.1 The Elliott 152 Work on the MRS5 contract at Borehamwood began in October 1946 and was essen- tially finished in 1950. Novel target-tracking radar was at the heart of the project, the radar being synchronized to the computer’s clock. In his enthusiasm for perfecting the radar technology, John Coales seems to have spent little time on what we would now call an overall systems design. When Harry Carpenter joined the staff of the Computing Division at Borehamwood on 1 January 1949, he recalls that nobody had yet defined the way in which the control program, running on the 152 computer, would interface with guns and radar. Furthermore, nobody yet appeared to be working on the computational algorithms necessary for three-dimensional trajectory predic- tion. As for the guns that the MRS5 system was intended to control, not even the basic ballistics parameters seemed to be known with any accuracy at Borehamwood [1, 2]. A1.1.1 Communication and Data-Rate The physical separation, between radar in the Borehamwood car park and digital computer in the laboratory, necessitated an interconnecting cable of about 150 m in length.
    [Show full text]
  • Oral History of Captain Grace Hopper
    Oral History of Captain Grace Hopper Interviewed by: Angeline Pantages Recorded: December, 1980 Naval Data Automation Command, Maryland CHM Reference number: X5142.2009 © 1980 Computer History Museum Table of Contents BACKGROUND HISTORY ...........................................................................................................3 1943-1949: MARK I, II, AND III COMPUTERS AT HARVARD....................................................6 1949-1964: ECKERT AND MAUCHLY, UNIVAC, AND THE ONE-PASS COMPILER ................7 The Need for User-Friendly Languages ..................................................................................10 DEMANDS FOR THE FUTURE..................................................................................................12 Application Processors, Database Machines, Distributed Processing ....................................12 Demand for Programmers and System Analysts ....................................................................14 The Value and Cost of Information..........................................................................................14 The Navy’s Dilemma: Micros and Software Creation..............................................................15 The Murray Siblings: Brilliant Communicators.........................................................................18 Common Sense and Distributed Computing ...........................................................................19 BACK TO 1943-1949: HOWARD AIKEN....................................................................................21
    [Show full text]
  • Law and Military Operations in Kosovo: 1999-2001, Lessons Learned For
    LAW AND MILITARY OPERATIONS IN KOSOVO: 1999-2001 LESSONS LEARNED FOR JUDGE ADVOCATES Center for Law and Military Operations (CLAMO) The Judge Advocate General’s School United States Army Charlottesville, Virginia CENTER FOR LAW AND MILITARY OPERATIONS (CLAMO) Director COL David E. Graham Deputy Director LTC Stuart W. Risch Director, Domestic Operational Law (vacant) Director, Training & Support CPT Alton L. (Larry) Gwaltney, III Marine Representative Maj Cody M. Weston, USMC Advanced Operational Law Studies Fellows MAJ Keith E. Puls MAJ Daniel G. Jordan Automation Technician Mr. Ben R. Morgan Training Centers LTC Richard M. Whitaker Battle Command Training Program LTC James W. Herring Battle Command Training Program MAJ Phillip W. Jussell Battle Command Training Program CPT Michael L. Roberts Combat Maneuver Training Center MAJ Michael P. Ryan Joint Readiness Training Center CPT Peter R. Hayden Joint Readiness Training Center CPT Mark D. Matthews Joint Readiness Training Center SFC Michael A. Pascua Joint Readiness Training Center CPT Jonathan Howard National Training Center CPT Charles J. Kovats National Training Center Contact the Center The Center’s mission is to examine legal issues that arise during all phases of military operations and to devise training and resource strategies for addressing those issues. It seeks to fulfill this mission in five ways. First, it is the central repository within The Judge Advocate General's Corps for all-source data, information, memoranda, after-action materials and lessons learned pertaining to legal support to operations, foreign and domestic. Second, it supports judge advocates by analyzing all data and information, developing lessons learned across all military legal disciplines, and by disseminating these lessons learned and other operational information to the Army, Marine Corps, and Joint communities through publications, instruction, training, and databases accessible to operational forces, world-wide.
    [Show full text]
  • John Mccarthy
    JOHN MCCARTHY: the uncommon logician of common sense Excerpt from Out of their Minds: the lives and discoveries of 15 great computer scientists by Dennis Shasha and Cathy Lazere, Copernicus Press August 23, 2004 If you want the computer to have general intelligence, the outer structure has to be common sense knowledge and reasoning. — John McCarthy When a five-year old receives a plastic toy car, she soon pushes it and beeps the horn. She realizes that she shouldn’t roll it on the dining room table or bounce it on the floor or land it on her little brother’s head. When she returns from school, she expects to find her car in more or less the same place she last put it, because she put it outside her baby brother’s reach. The reasoning is so simple that any five-year old child can understand it, yet most computers can’t. Part of the computer’s problem has to do with its lack of knowledge about day-to-day social conventions that the five-year old has learned from her parents, such as don’t scratch the furniture and don’t injure little brothers. Another part of the problem has to do with a computer’s inability to reason as we do daily, a type of reasoning that’s foreign to conventional logic and therefore to the thinking of the average computer programmer. Conventional logic uses a form of reasoning known as deduction. Deduction permits us to conclude from statements such as “All unemployed actors are waiters, ” and “ Sebastian is an unemployed actor,” the new statement that “Sebastian is a waiter.” The main virtue of deduction is that it is “sound” — if the premises hold, then so will the conclusions.
    [Show full text]
  • Women in Computing
    History of Computing CSE P590A (UW) PP190/290-3 (UCB) CSE 290 291 (D00) Women in Computing Katherine Deibel University of Washington [email protected] 1 An Amazing Photo Philadelphia Inquirer, "Your Neighbors" article, 8/13/1957 2 Diversity Crisis in Computer Science Percentage of CS/IS Bachelor Degrees Awarded to Women National Center for Education Statistics, 2001 3 Goals of this talk ! Highlight the many accomplishments made by women in the computing field ! Learn their stories, both good and bad 4 Augusta Ada King, Countess of Lovelace ! Translated and extended Menabrea’s article on Babbage’s Analytical Engine ! Predicted computers could be used for music and graphics ! Wrote the first algorithm— how to compute Bernoulli numbers ! Developed notions of looping and subroutines 5 Garbage In, Garbage Out The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform. It can follow analysis; but it has no power of anticipating any analytical relations or truths. — Ada Lovelace, Note G 6 On her genius and insight If you are as fastidious about the acts of your friendship as you are about those of your pen, I much fear I shall equally lose your friendship and your Notes. I am very reluctant to return your admirable & philosophic 'Note A.' Pray do not alter it… All this was impossible for you to know by intuition and the more I read your notes the more surprised I am at them and regret not having earlier explored so rich a vein of the noblest metal.
    [Show full text]
  • Computer Pioneer / Kim Todd
    Copyright © 2015 Truman State University Press, Kirksville, Missouri, 63501 All rights reserved tsup.truman.edu Cover art: Betty Jean Jennings, ca. 1941; detail of ENIAC, 1946. Cover design: Teresa Wheeler Library of Congress Cataloging-in-Publication Data Todd, Kim D., author. Jean Jennings Bartik : computer pioneer / Kim Todd. pages cm—(Notable Missourians) Summary: “As a young girl in the 1930s, Jean Bartik dreamed of adventures in the world beyond her family’s farm in northwestern Missouri. After college, she had her chance when she was hired by the U.S. Army to work on a secret project. At a time when many people thought women could not work in technical fields like science and mathematics, Jean became one of the world’s first computer programmers. She helped program the ENIAC, the first successful stored-program computer, and had a long career in the field of computer science. Thanks to computer pioneers like Jean, today we have computers that can do almost anything.”—Provided by publisher. Audience: Ages 10-12. Audience: Grades 4 to 6. Includes bibliographical references and index. ISBN 978-1-61248-145-6 (library binding : alk. paper)—ISBN 978-1-61248-146-3 (e-book) 1. Bartik, Jean--Juvenile literature. 2. Women computer scientists—United States—Biography—Juvenile literature. 3. Computer scientists— United States—Biography—Juvenile literature. 4. Women computer programmers— United States—Biography—Juvenile literature. 5. Computer programmers—United States—Biography—Juvenile literature. 6. ENIAC (Computer)—History—Juvenile literature. 7. Computer industry—United States—History—Juvenile literature. I. Title. QA76.2.B27T63 2015 004.092--dc23 2015011360 No part of this work may be reproduced or transmitted in any format by any means without written permission from the publisher.
    [Show full text]
  • Computer Development at the National Bureau of Standards
    Computer Development at the National Bureau of Standards The first fully operational stored-program electronic individual computations could be performed at elec- computer in the United States was built at the National tronic speed, but the instructions (the program) that Bureau of Standards. The Standards Electronic drove these computations could not be modified and Automatic Computer (SEAC) [1] (Fig. 1.) began useful sequenced at the same electronic speed as the computa- computation in May 1950. The stored program was held tions. Other early computers in academia, government, in the machine’s internal memory where the machine and industry, such as Edvac, Ordvac, Illiac I, the Von itself could modify it for successive stages of a compu- Neumann IAS computer, and the IBM 701, would not tation. This made a dramatic increase in the power of begin productive operation until 1952. programming. In 1947, the U.S. Bureau of the Census, in coopera- Although originally intended as an “interim” com- tion with the Departments of the Army and Air Force, puter, SEAC had a productive life of 14 years, with a decided to contract with Eckert and Mauchly, who had profound effect on all U.S. Government computing, the developed the ENIAC, to create a computer that extension of the use of computers into previously would have an internally stored program which unknown applications, and the further development of could be run at electronic speeds. Because of a demon- computing machines in industry and academia. strated competence in designing electronic components, In earlier developments, the possibility of doing the National Bureau of Standards was asked to be electronic computation had been demonstrated by technical monitor of the contract that was issued, Atanasoff at Iowa State University in 1937.
    [Show full text]
  • The ABC of Computing
    COMMENT BOOKS & ARTS teamed up with recent graduate Clifford DEPT Berry to develop the system that became S ON known as the Atanasoff–Berry Computer I (ABC). Built on a shoestring budget, the ECT LL O C simple ‘breadboard’ prototype that emerged L A contained significant innovations. These I included the use of vacuum tubes as the com- B./SPEC puting mechanism and operating memory; I V. L V. binary and logical calculation; serial com- I putation; and the use of capacitors as storage memory. By the summer of 1940, Smiley tells us, a second, more-developed prototype was UN STATE IOWA running and Atanasoff and Berry had writ- ten a 35-page manuscript describing it. Other people were working on similar devices. In the United Kingdom and at Princeton University in New Jersey, Turing was investigating practical outlets for the concepts in his 1936 paper ‘On Comput- able Numbers’. In London, British engineer Tommy Flowers was using vacuum tubes as electronic switches for telephone exchanges in the General Post Office. In Germany, Konrad Zuse was working on a floating-point calculator — albeit based on electromechani- cal technology — that would have a 64-word The 1940s Atanasoff–Berry Computer (ABC) was the first to use innovations such as vacuum tubes. storage capacity by 1941. Smiley weaves these stories into the narrative effectively, giving a BIOGRAPHY broad sense of the rich ecology of thought that burgeoned during this crucial period of technological and logical development. The Second World War changed every- The ABC of thing. Atanasoff left Iowa State to work in the Naval Ordnance Laboratory in Washing- ton DC.
    [Show full text]
  • Curriculum Vitae 2/8
    Ian Eisenman Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093-0230 [email protected], 858-224-2357, http://eisenman.ucsd.edu Research Description Interests: Climate dynamics, including sea ice, paleoclimate, icebergs, and large-scale circula- tions of the atmosphere and ocean. Approach: Construction and mathematical analysis of idealized physical models, numerical simulations using climate models with varying degrees of complexity, and analysis of observations. Preparation and Appointments Professor UC San Diego Scripps Inst. Oceanogr. 2021–present Assoc. Prof. UC San Diego Scripps Inst. Oceanogr. 2017–2021 Asst. Prof. UC San Diego Scripps Inst. Oceanogr. 2012–2017 Caltech Environ. Sci. and Eng. Hosts: Tapio Schneider Postdoc Univ. Washington Atmospheric Sci.2008–2012 & David Battisti Ph.D. Harvard University Earth and Planet. Sci. 2008 Advisor: Eli Tziperman S.M. Harvard University Applied Mathematics 2005 M.A. UC Santa Barbara Physics 2002 B.A. Williams College Philosophy and Physics 1999 Fellowships and Honors Scripps Institution of Oceanography Graduate Teacher of the Year Award, 2017. Hellman Fellowship, 2016–2017. AGU Cryosphere Early Career Award, 2012. Jerome Namias endowed faculty chair, Scripps Institution of Oceanography, 2012–present. Chapman Chair Lecturer, University of Alaska Fairbanks, 2010. NOAA Climate and Global Change Postdoctoral Fellowship, 2008–2011. Caltech TPF Foundation Postdoctoral Fellowship, 2008–2011. Woods Hole Oceanographic Institution Geophysical Fluid Dynamics Fellowship, 2006. NASA Earth System Science Graduate Student Fellowship, 2005–2008. Harvard University Certificate of Distinction in Teaching, 2004. UC Santa Barbara Dept of Physics Outstanding Teaching Assistant Award, 2000–2001. U.S. Department of Education Robert C. Byrd Scholarship, 1995–1999. Ian Eisenman Curriculum Vitae 2/8 Publications [Members of group are underlined.] [54] L.
    [Show full text]