Structural Stages in the Development of the Long Bones and Epiphyses a STUDY in the NEW ZEALAND WHITE RABBIT

Total Page:16

File Type:pdf, Size:1020Kb

Structural Stages in the Development of the Long Bones and Epiphyses a STUDY in the NEW ZEALAND WHITE RABBIT COPYRIGHT © 2002 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED Structural Stages in the Development of the Long Bones and Epiphyses A STUDY IN THE NEW ZEALAND WHITE RABBIT BY ROBERTO RIVAS, MD, AND FREDERIC SHAPIRO, MD Investigation performed at the Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Children’s Hospital, Harvard Medical School, Boston, Massachusetts Background: Histologic delineation of the events involved in the development of long bones and the develop- mental age at which these events occur is needed to elucidate the genetic and molecular mechanisms associ- ated with these events. This report describes the sequence of histologic events involved in the formation of long bones and their epiphyses in the New Zealand White rabbit. Methods: Prenatal studies were performed on twelve, fourteen, fifteen, sixteen, eighteen, twenty-one, twenty- four, and twenty-seven-day-old rabbit embryos, and postnatal studies were performed on newborn rabbits and on three-to-four-day-old; one, two, four, and six-week-old; and two, three, four, six, and eight-month-old rabbits. Histologic specimens from embryos were embedded in plastic and stained with toluidine blue or safranin O-fast green, and specimens from postnatal rabbits were embedded in paraffin and stained with hematoxylin and eosin or safranin O-fast green. Results: Studies of twelve-day-old embryos demonstrated upper and lower limb buds filled with undifferentiated mesenchymal cells, and studies of fourteen-day-old embryos showed mesenchymal condensation and begin- ning cartilage formation outlining major long bones. Long-bone and epiphyseal development progressed through sixteen structural stages, and the developmental age at which these stages occurred was determined. These stages included limb-bud formation with uniform distribution of mesenchymal cells and formation of an apical ectodermal ridge (stage 1); mesenchymal condensation (stage 2); cartilage differentiation (stage 3); formation of a primary center of ossification (stage 4a); epiphyseal cartilage vascularization with formation of cartilage ca- nals (stage 7); vascular invasion of the developing secondary ossification center (stage 9); bone formation and marrow cavitation in the secondary ossification center with formation of hematopoietic marrow (stage 10); full- est relative extent of secondary-ossification-center development in epiphyseal cartilage (stage 14); thinning of the physis (stage 15); and resorption of the physis with establishment of continuity between epiphyseal and metaphyseal circulations (stage 16). Clinical Relevance: The detailed classification system presented here will allow for correlations between genetic and molecular mechanisms and histologic events in normal and abnormal development of long bones and their epiphyses. Many of the nonosseous structures formed during long-bone and epiphyseal development in the fetus, infant, and child are amenable to assessment with sonography and magnetic resonance imaging. An understand- ing of the histopathological features of developmental abnormalities of the long bones and their epiphyses re- vealed with newer imaging techniques should greatly improve management by allowing earlier diagnosis. cientific studies have revealed that bones grow in length edge of the precise sequence of these histologic events and the by increments at their cartilaginous ends and in width by times at which they occur. periosteal apposition and that they remodel by resorp- The purposes of the present study were to determine the S 1-3 tion at the metaphyseal and inner cortical regions . In the last sequence of histologic events involved in the formation of several years, much has been learned about the molecular long bones and their epiphyses from the embryonic limb-bud mechanisms involved in limb morphogenesis4-10. Correlation stage to skeletal maturity, to classify the various stages, and to of the continuum of histologic events with molecular mecha- define the time at which each event occurs in the New Zealand nisms during the development of a long bone requires knowl- White rabbit. THE JOURNAL OF BONE & JOINT SURGERY · JBJS.ORG STRUCTURAL STAGES IN THE DEVELOPMENT OF THE VOLUME 84-A · NUMBER 1 · JANUARY 2002 LONG BONES AND EPIPHYSES TABLE I Histologic Stages in Long-Bone and Epiphyseal Development Stage* Histologic Events 1 Limb-bud formation, uniform distribution of mesenchymal cells, and formation of apical ectodermal ridge 2 Mesenchymal condensation 3 Cartilage differentiation 3a Interzone formation 3b Chondrocyte hypertrophy in middle part of long-bone cartilage model 4 Epiphyseal shaping 4a Formation of intramembranous periosteal bone at mid-diaphysis (primary center of ossification) 5 Resorption of joint interzone and formation of smooth articular cartilage surface 5a Vascular invasion of hypertrophic chondrocyte area, endochondral bone formation (mid-diaphysis), and completion of formation of primary center of ossification 6 Formation of the physis and of peripheral perichondrial groove tissue 6a Farthest relative extent of epiphyseal/physeal position 7 Vascularization of epiphyseal cartilage with formation of cartilage canals 8 Central chondrocyte hypertrophy to form spherical mass, development of growth plate completely surrounding secondary ossification center 9 Vascular invasion of developing secondary ossification center into hypertrophic chondrocytes adjacent to mineralized cartilage matrix 10 Bone formation and marrow cavitation in secondary ossification center, formation of hematopoietic marrow 11 Increase in size of secondary ossification center, decrease in size of epiphyseal cartilage 12 Central chondrocyte hypertrophy and secondary-ossification-center growth-plate change from spherical to hemi- spherical orientation 13 Fat in marrow, hematopoietic marrow adjacent to secondary-ossification-center growth plate 13a Epiphyseal bone-plate formation 14 Fullest relative extent of secondary-ossification-center development in epiphyseal cartilage 15 Thinning of physis 15a Involution of secondary-ossification-center growth plate 15b Subchondral bone-plate formation 16 Resorption of physis with linkage of epiphyseal and metaphyseal circulations 16a Calcification of lowest zone of articular cartilage, tidemark formation, and transformation of all marrow to fat *The substages, labeled a and b, refer to events occurring at the same time as a particular stage in different parts of the same bone or to a structurally important continuation of the same process at a slightly later time. Fig. 1-A The components of the developing end of a long bone. The epiphysis is composed of the articular cartilage (AC), the epiphyseal cartilage (EC), and the physis (growth plate). The secondary ossification center (SOC) forms by the endochondral mechanism within the epiphyseal cartilage. It is completely surrounded in the earlier phases of development by another growth plate, the growth plate of the secondary ossification center (GP-SOC), which is responsible for the circumferential growth of the secondary center. THE JOURNAL OF BONE & JOINT SURGERY · JBJS.ORG STRUCTURAL STAGES IN THE DEVELOPMENT OF THE VOLUME 84-A · NUMBER 1 · JANUARY 2002 LONG BONES AND EPIPHYSES Materials and Methods animals. The embryos were obtained from Pel-Freez Biologi- Study Group cals (Rogers, Arkansas). The embryos were staged according he formation and development of the long bones and epi- to the external criteria described by Edwards11 and in previous Tphyses in the New Zealand White rabbit were studied studies of rabbit embryos12,13. Twelve, fourteen, and fifteen- prenatally in twelve, fourteen, fifteen, sixteen, eighteen, twenty- day-old embryos were examined and photographed with use one, twenty-four, and twenty-seven-day-old embryos and post- of a dissecting photomicroscope for limb-bud definition. Pre- natally in newborn; three-to-four-day-old; one, two, four, and natal studies were performed on serial sections of developing six-week-old; and two, three, four, six, and eight-month-old upper and lower limbs. Twelve, fourteen, and fifteen-day-old Fig. 1-B The major stages in the formation and development of long bones and epiphyses (defined in Table I), from stage 1 to stage 16a. THE JOURNAL OF BONE & JOINT SURGERY · JBJS.ORG STRUCTURAL STAGES IN THE DEVELOPMENT OF THE VOLUME 84-A · NUMBER 1 · JANUARY 2002 LONG BONES AND EPIPHYSES TABLE II Relationship Between Age and Developmental Stage at Major Long Bones and Their Epiphyses ➤ Humerus Proximal Parts of Age Proximal* Middle Distal Radius and Ulna Prenatal 12 d 1 1 1 14 d 2 3 2 2 15 d§ 3, 3a, 4 3b 3, 3a, 4 3, 3a, 4 16 d 4 4a 4 4 18 d 6a 5a 5 5 21 d 7 6 6 24 d 8 8 6a 27 d 8/8 8 8 Postnatal Newborn 9/9 9 3-4 d 10/9 9 1 wk 10/10 10 2 wk 12/11 12 12 4 wk§ 13/13, 13a/13a 13, 13a 13a 6 wk 2 mo 15/15 15 3 mo§ 15, 15a, 15b 15, 15a, 15b 4 mo 6 mo 16 16a 8 mo 16 16 16 *Two separate secondary ossification centers initially form in the proximal part of the humerus. From stages 8 to 15, the developmental stages for the medial center and the lateral center are separated by a slash. Differentiation is not made after fusion into one osseous mass. †Two separate secondary ossification centers initially form in the proximal part of the femur. The developmental stages for the femoral head center and the greater trochanter center are separated by a slash. Differentiation is not made after fusion into one osseous mass. ‡Two sep- arate secondary ossification centers initially form in the proximal part of the tibia. The developmental stages for the main proximal center and the tibial tubercle center are separated by a slash. Differentiation is not made after fusion into one osseous mass. §When two or more stages are identified in the same epiphysis at the same time, the stages are separated by commas. embryos were serially sectioned intact, whereas sixteen, eigh- femora of newborn, three-to-four-day-old, and one and two- teen, twenty-one, twenty-four, and twenty-seven-day-old em- week-old animals and from the humeri of newborn and one- bryos were studied with use of serial sections of the upper and week-old animals.
Recommended publications
  • Development of the Endochondral Skeleton
    Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Development of the Endochondral Skeleton Fanxin Long1,2 and David M. Ornitz2 1Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 2Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110 Correspondence: fl[email protected] SUMMARY Much of the mammalian skeleton is composed of bones that originate from cartilage templates through endochondral ossification. Elucidating the mechanisms that control endochondral bone development is critical for understanding human skeletal diseases, injury response, and aging. Mouse genetic studies in the past 15 years have provided unprecedented insights about molecules regulating chondrocyte formation, chondrocyte maturation, and osteoblast differ- entiation, all key processes of endochondral bone development. These include the roles of the secreted proteins IHH, PTHrP, BMPs, WNTs, and FGFs, their receptors, and transcription factors such as SOX9, RUNX2, and OSX, in regulating chondrocyte and osteoblast biology. This review aims to integrate the known functions of extracellular signals and transcription factors that regulate development of the endochondral skeleton. Outline 1 Introduction 5 Osteoblastogenesis 2 Mesenchymal condensation 6 Closing remarks 3 Chondrocyte differentiation References 4 Growth plate development Editors: Patrick P.L. Tam, W. James Nelson, and Janet Rossant Additional Perspectives on Mammalian Development available at www.cshperspectives.org Copyright # 2013 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a008334 Cite this article as Cold Spring Harb Perspect Biol 2013;5:a008334 1 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press F.
    [Show full text]
  • Intervertebral and Epiphyseal Fusion in the Postnatal Ontogeny of Cetaceans and Terrestrial Mammals
    J Mammal Evol DOI 10.1007/s10914-014-9256-7 ORIGINAL PAPER Intervertebral and Epiphyseal Fusion in the Postnatal Ontogeny of Cetaceans and Terrestrial Mammals Meghan M. Moran & Sunil Bajpai & J. Craig George & Robert Suydam & Sharon Usip & J. G. M. Thewissen # Springer Science+Business Media New York 2014 Abstract In this paper we studied three related aspects of the Introduction ontogeny of the vertebral centrum of cetaceans and terrestrial mammals in an evolutionary context. We determined patterns The vertebral column provides support for the body and of ontogenetic fusion of the vertebral epiphyses in bowhead allows for flexibility and mobility (Gegenbaur and Bell whale (Balaena mysticetus) and beluga whale 1878;Hristovaetal.2011; Bruggeman et al. 2012). To (Delphinapterus leucas), comparing those to terrestrial mam- achieve this mobility, individual vertebrae articulate with each mals and Eocene cetaceans. We found that epiphyseal fusion other through cartilaginous intervertebral joints between the is initiated in the neck and the sacral region of terrestrial centra and synovial joints between the pre- and post- mammals, while in recent aquatic mammals epiphyseal fusion zygapophyses. The mobility of each vertebral joint varies is initiated in the neck and caudal regions, suggesting loco- greatly between species as well as along the vertebral column motor pattern and environment affect fusion pattern. We also within a single species. Vertebral column mobility greatly studied bony fusion of the sacrum and evaluated criteria used impacts locomotor style, whether the animal is terrestrial or to homologize cetacean vertebrae with the fused sacrum of aquatic. In aquatic Cetacea, buoyancy counteracts gravity, and terrestrial mammals. We found that the initial ossification of the tail is the main propulsive organ (Fish 1996;Fishetal.
    [Show full text]
  • Upper Limb Development
    Upper Limb Development Alphonsus Chong Department of Hand and Reconstructive Microsurgery National University Hospital Why bother? Most congenital limb anomalies are due to: Disorders of embryogenesis or Problems during fetal development Some terminology Embryogenesis 0-8 weeks – new organ systems appear Fetal period Appearance of primary ossification center in humerus Differentiation, maturation and enlargement of existing organs Limb Development Limb Patterning Tissue Differentiation Why is it an arm and not Skeletal a leg? Joint Vascular Nerve Muscle and Tendon Positional Information and Axes of the upper limb Limb Bud in E3 Chick Embryo Limb bud (lateral plate) Loose mesenchymal cells from lateral plate mesoderm Ectodermal epithelial cells Migrating cells Somites --> Muscle Nerves Vasculature Limb Bud Development Limb bud Ectoderm and mesenchyme Not fully differentiated yet but all ingredients there If transplanted ectopic limb Limb Bud Regions AER Progress zone Zone of polarizing activity AER – Proximal to Distal formation Zone of Polarizing Actvity – AP development Morphogen Gradient Model Dorsal / ventral patterning less well understood Separation of Digits Apoptosis (Programmed cell death) of interdigital mesenchyme BMPs important Starts post-axial to pre-axial Mesoderm specifies amount of apoptosis How does this relate to pathogensis? Picture from Greene Learning Points UE development occurs early in embryogenesis – most risk of development congenital anomalies Pattern of limb development follows a body plan Digit formation is by apoptosis Thank You Further Reading Principles of Development 3rd Ed by Lewis Wolpert. Oxford University Press Growing Hand. Amit Gupta and Louisville Group.
    [Show full text]
  • Pg 131 Chondroblast -> Chondrocyte (Lacunae) Firm Ground Substance
    Figure 4.8g Connective tissues. Chondroblast ‐> Chondrocyte (Lacunae) Firm ground substance (chondroitin sulfate and water) Collagenous and elastic fibers (g) Cartilage: hyaline No BV or nerves Description: Amorphous but firm Perichondrium (dense irregular) matrix; collagen fibers form an imperceptible network; chondroblasts produce the matrix and when mature (chondrocytes) lie in lacunae. Function: Supports and reinforces; has resilient cushioning properties; resists compressive stress. Location: Forms most of the embryonic skeleton; covers the ends Chondrocyte of long bones in joint cavities; forms in lacuna costal cartilages of the ribs; cartilages of the nose, trachea, and larynx. Matrix Costal Photomicrograph: Hyaline cartilage from the cartilages trachea (750x). Thickness? Metabolism? Copyright © 2010 Pearson Education, Inc. Pg 131 Figure 6.1 The bones and cartilages of the human skeleton. Epiglottis Support Thyroid Larynx Smooth Cartilage in Cartilages in cartilage external ear nose surface Cricoid Trachea Articular Lung Cushions cartilage Cartilage of a joint Cartilage in Costal Intervertebral cartilage disc Respiratory tube cartilages in neck and thorax Pubic Bones of skeleton symphysis Meniscus (padlike Axial skeleton cartilage in Appendicular skeleton knee joint) Cartilages Articular cartilage of a joint Hyaline cartilages Elastic cartilages Fibrocartilages Pg 174 Copyright © 2010 Pearson Education, Inc. Figure 4.8g Connective tissues. (g) Cartilage: hyaline Description: Amorphous but firm matrix; collagen fibers form an imperceptible network; chondroblasts produce the matrix and when mature (chondrocytes) lie in lacunae. Function: Supports and reinforces; has resilient cushioning properties; resists compressive stress. Location: Forms most of the embryonic skeleton; covers the ends Chondrocyte of long bones in joint cavities; forms in lacuna costal cartilages of the ribs; cartilages of the nose, trachea, and larynx.
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • Bone Markings / Features on Bones
    08/05/2016 Bone Markings : Skeletal System Search Custom Search Like Tweet Home Health News Human Body Biology Chemistry Glossary Textbooks Bone Disorders Ads by Google ► Bone Tissue ► Bone Marrow ► Human Skull Bone ► Bone on Bone Knee Sun 8 May 2016 Bone Markings / Features on Bones Human Body Study Section Bone markings and the features of bones (including the correct words used to describe them) are often required by first­level courses in human anatomy and associated health science subjects. It is important to be familiar with the terminology used to Human Body Index refer to bone markings in order to communicate effectively with professionals involved in healthcare, research, forensics, and Health Glossary related disciplines. More about Bones and the Skeletal System: The following terms used to describe bone markings or features on bones are in alphabetical order with short definitions: Human Skeleton Axial and Appendicular Word / Term Meaning / Description Type of Example(s) Skeleton (Bone Marking or bone The Structure and Feature) marking Functions of Bones Types of Bones 1. Angle A corner Feature of Inferior angle (lower) and superior angle (upper) are Bone Markings & Features shape of bone the rounded angles or "corners" of the scapula. on Bones Disorders of the Skeletal 2. Body The main portion of a bone The diaphysis of long bones such as the humerus. System Curvature of the Spine 3. Condyle Rounded bump or large rounded Process ­ The medial condyle of the femur (bone), upper­leg. prominence. Such rounded surfaces forms joints Types of Joints usually fit into a fossa on another bone to Specific bones: form a joint.
    [Show full text]
  • The Epiphyseal Plate: Physiology, Anatomy, and Trauma*
    3 CE CREDITS CE Article The Epiphyseal Plate: Physiology, Anatomy, and Trauma* ❯❯ Dirsko J. F. von Pfeil, Abstract: This article reviews the development of long bones, the microanatomy and physiology Dr.med.vet, DVM, DACVS, of the growth plate, the closure times and contribution of different growth plates to overall growth, DECVS and the effect of, and prognosis for, traumatic injuries to the growth plate. Details on surgical Veterinary Specialists of Alaska Anchorage, Alaska treatment of growth plate fractures are beyond the scope of this article. ❯❯ Charles E. DeCamp, DVM, MS, DACVS athologic conditions affecting epi­ foramen. Growth factors and multipotent Michigan State University physeal (growth) plates in imma­ stem cells support the formation of neo­ ture animals may result in severe natal bone consisting of a central marrow P 2 orthopedic problems such as limb short­ cavity surrounded by a thin periosteum. ening, angular limb deformity, or joint The epiphysis is a secondary ossifica­ incongruity. Understanding growth plate tion center in the hyaline cartilage forming anatomy and physiology enables practic­ the joint surfaces at the proximal and distal At a Glance ing veterinarians to provide a prognosis ends of the bones. Secondary ossification Bone Formation and assess indications for surgery. Injured centers can appear in the fetus as early Page E1 animals should be closely observed dur­ as 28 days after conception1 (TABLE 1). Anatomy of the Growth ing the period of rapid growth. Growth of the epiphysis arises from two Plate areas: (1) the vascular reserve zone car­ Page E2 Bone Formation tilage, which is responsible for growth of Physiology of the Growth Bone is formed by transformation of con­ the epiphysis toward the joint, and (2) the Plate nective tissue (intramembranous ossifica­ epiphyseal plate, which is responsible for Page E4 tion) and replacement of a cartilaginous growth in bone length.3 The epiphyseal 1 Growth Plate Closure model (endochondral ossification).
    [Show full text]
  • Homeobox Genes D11–D13 and A13 Control Mouse Autopod Cortical
    Research article Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation Pablo Villavicencio-Lorini,1,2 Pia Kuss,1,2 Julia Friedrich,1,2 Julia Haupt,1,2 Muhammed Farooq,3 Seval Türkmen,2 Denis Duboule,4 Jochen Hecht,1,5 and Stefan Mundlos1,2,5 1Max Planck Institute for Molecular Genetics, Berlin, Germany. 2Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany. 3Human Molecular Genetics Laboratory, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan. 4National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland. 5Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Universitätsmedizin Berlin, Berlin, Germany. The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichon- drium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11–/–Hoxd12–/–Hoxd13–/– tri- ple-knockout mice and Hoxd13–/–Hoxa13+/– mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative.
    [Show full text]
  • Download File
    Cartilage Development and Maturation In Vitro and In Vivo Johnathan Ng Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2017 © 2017 Johnathan Ng All rights reserved Abstract Cartilage Development and Maturation In Vitro and In Vivo Johnathan Ng The articular cartilage has a limited capacity to regenerate. Cartilage lesions often result in degeneration, leading to osteoarthritis. Current treatments are mostly palliative and reparative, and fail to restore cartilage function in the long term due to the replacement of hyaline cartilage with fibrocartilage. Although a stem-cell based approach towards regenerating the articular cartilage is attractive, cartilage generated from human mesenchymal stem cells (hMSCs) often lack the function, organization and stability of the native cartilage. Thus, there is a need to develop effective methods to engineer physiologic cartilage tissues from hMSCs in vitro and assess their outcomes in vivo. This dissertation focused on three coordinated aims: establish a simple in vivo model for studying the maturation of osteochondral tissues by showing that subcutaneous implantation in a mouse recapitulates native endochondral ossification (Aim 1), (ii) develop a robust method for engineering physiologic cartilage discs from self-assembling hMSCs (Aim 2), and (iii) improve the organization and stability of cartilage discs by implementing spatiotemporal control during induction in vitro (Aim 3). First, the usefulness of subcutaneous implantation in mice for studying the development and maintenance of osteochondral tissues in vivo was determined. By studying juvenile bovine osteochondral tissues, similarities in the profiles of endochondral ossification between the native and ectopic processes were observed.
    [Show full text]
  • Epiphyseal Photopenia Associated with Metaphyseal Osteomyelitis and Subperiosteal Abscess
    Epiphyseal Photopenia Associated with Metaphyseal Osteomyelitis and Subperiosteal Abscess Patrice K. Rehm and John Delahay Division ofNuclear Medicine, Departments ofRadiology and Orthopedic Surgery, Georgetown University Hospital, Washington, DC fevers and knee pain necessitating surgical exploration. An abscess We present a case of metaphysealosteomyelitis in a child where was present, with a small amount of purulence within the bone, as bone scintigraphy demonstrated photopenia of the distal femoral well as copious purulent material beneaththe metaphysealperios epiphysis in the absence of infection of the epiphysis or the joint space. A subsequent bone scan demonstrated evolution of the teum medially, neither being under pressure. No effusion or vascular compromise of the epiphysis due to the metaphyseal purulence was found within the joint or the epiphysis. Copious osteomyelitis complicated by subperiosteal abscess. We discuss irrigation was performed and drains were left in place. Antibiotic the mechanisms and implications of photopenia in the setting of therapy was changed to intravenous penicillin. Gram stain and acute bone and joint infection. cultures of the purulent sitessubsequentlywere positive for Group Key Words epiphyseal photopenia; metaphyseal osteomyelitis; A strep and the epiphysis andjoint sites were negative. subperiostealabscess; bone scintigraphy Becauseof spikingfeversandcontinuedkneepain, the patient J Nuci Med 1998 391084-1086 underwent a second surgical exploration and debridement on the fifth hospital day. Purulent material was found within the knee joint and within the metaphysis, neither being under pressure. Photopeniaonbonescintigraphyintheclinicalsettingofacute The child defervesced and completed a 6-wk course of intrave bone and joint infection is well recognized. It may occur by a nous ceftriaxone. A three-phase bone scan 1 mo after onset variety of mechanisms, all related to alterations in blood flow revealed increased activity of the distal femoral epiphysis in and delivery ofthe radiotracer secondary to infection.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Bones of the Skeletal System
    BIOLOGY 211: HUMAN ANATOMY & PHYSIOLOGY ********************************************************************************************************* BONES OF THE SKELETAL SYSTEM ********************************************************************************************************** Reference: Saladin, KS: Anatomy & Physiology, The Unity of Form and Function, 6th ed. (2012) or 7th ed. (2015) Please review Chapters 7 & 8 before beginning this lab. INTRODUCTION The skeletal system has a number of important functions in the human body. It is the framework around which the body is organized, it provides levers for muscles to pull against, and it surrounds and protects many soft organs. Equally important, bones serve as a "buffer" in which calcium and other ions can be deposited and withdrawn according to the changing needs of the body, and they are the site of almost all blood cell production. Contrary to our popular conceptions, bones are not rigid, inflexible structures: they are constantly changing, and can have a remarkable degree of flexibility before they break. The organs of the skeletal system are the bones and joints, and like all organs are composed of different types of tissue. Although we tend to classify them into "types" such as "long bones", "flat bones", etc., each is in fact unique and ideally suited to its particular location and function. We classify bones as belonging to either: a) the axial skeleton (head and trunk) b) the appendicular skeleton (arms and legs), However, you should always bear in mind that the entire skeletal system functions as a unit. If you look at any bone, you will see that it is rarely flat or smooth. Bones have a variety of bumps, grooves, holes, etc. which allow them to serve their specific functions.
    [Show full text]