Antipsychotics (Part-4) FLUOROBUTYROPHENONES

Total Page:16

File Type:pdf, Size:1020Kb

Antipsychotics (Part-4) FLUOROBUTYROPHENONES Antipsychotics (Part-4) FLUOROBUTYROPHENONES The fluorobutyrophenones belong to a much-studied class of compounds, with many compounds possessing high antipsychotic activity. They were obtained by structure variation of the analgesic drug meperidine by substitution of the N-methyl by butyrophenone moiety to produce the butyrophenone analogue which has similar activity as chlorpromazine. COOC2H5 N H3C Meperidine COOC2H5 N O Butyrophenone analog The structural requirements for antipsychotic activity in the group are well worked out. General features are expressed in the following structure. F AR Y O N • Optimal activity is seen when with an aromatic with p-fluoro substituent • When CO is attached with p-fluoroaryl gives optimal activity is seen, although other groups, C(H)OH and aryl, also give good activity. • When 3 carbons distance separates the CO from cyclic N gives optimal activity. • The aliphatic amino nitrogen is required, and highest activity is seen when it is incorporated into a cyclic form. • AR is an aromatic ring and is needed. It should be attached directly to the 4-position or occasionally separated from it by one intervening atom. • The Y group can vary and assist activity. An example is the hydroxyl group of haloperidol. The empirical SARs suggest that the 4-aryl piperidino moiety is superimposable on the 2-- phenylethylamino moiety of dopamine and, accordingly, could promote affinity for D2 receptors. The long N-alkyl substituent could help promote affinity and produce antagonistic activity. Some members of the class are extremely potent antipsychotic agents and D2 receptor antagonists. The EPS are extremely marked in some members of this class, which may, in part, be due to a potent DA block in the striatum and almost no compensatory striatal anticholinergic block. Most of the compounds do not have the structural features associated with effective anticholinergic activity. General formula of butyrophenone derivatives F R O Haloperidol, (Haldol). 4-[4-(p-Chlorophenyl)-4-hydroxypiperidino]-4'-fluorobutyrophenone OH F N O Haloperidol Cl The compound is a potent antipsychotic useful in schizophrenia and in psychoses associated with brain damage. It is often chosen as the agent to terminate mania. Therapy for Gilles de la Tourette's syndrome often employs the drug. [Tourette's syndrome is a movement disorder characterized by facial tics, grimaces, strange uncontrollable sounds, and sometimes the involuntary shouting of obscenities. Overlay of dopamine and the antipsychotic drug haloperidol Software used: Dis Viewer Pro “Accelrys” [1] Dopamine and Haloperidol after energy minimization Haloperidol decanoate CH CH O 2 3 8 O F N O Cl Haloperidol decanoate Haloperidol decanoate is a depot maintenance therapy injected every 4-6 weeks and appears to be as effective as daily orally administered haloperidol. Haloperidol decanoate CH CH O 2 3 8 O F N O Cl Haloperidol decanoate Haloperidol decanoate is a depot maintenance therapy injected every 4-6 weeks and appears to be as effective as daily orally administered haloperidol. Trifluperidol OH F N CF3 O Trifluperidol Droperidol, (Inapsine). 1-{1-[3-(p-Fluorobenzoyl)propyl]-1,2,5,6-tetrahydro-4-pyridyl}-2-benzimidazolinone O NH F N N O Droperidol The agent may be used alone as a preanesthetic neuroleptic or as an antiemetic. Its most frequent use is in combination (Innovar) with the narcotic agent fentanyl (Sublimaze) preanesthetically. It is considered as a short-acting sedating butyrophenone and sometimes used in psychiatric emergencies as a sedative-neuroleptic. Spiperone O NH F N O N Spiperone Spiperone contains spiro fusion between the peperidine moiety and imidazolidine ring. More details about spiperone are discussed with serotonin antagonists. Metabolism of butyrophenones The following scheme shows typical oxidative metabolic pathway of butyrophenone as exemplified by haloperidol. OH F N O Haloperidol Cl Reduction N-dealkylation OH HN OH F COOH + F N O OH Cl Cl F COOH OH F COOH N H O Butyrophenpones structures: F AR Y O N OH F N O Haloperidol Cl OH F N CF O 3 Trifluperidol O NH F N N O Droperidol O NH F N O N Spiperone Modified butyrophenone derivatives Modification of the haloperidol butyrophenone side chain by replacement of the p-fluorphenyl- keto- function with a di-(4-fluorophenyl)methane moiety results in diphenylbutylpiperidine neuroleptics, such as pimozide, penfluridol, and fluspirilene. Penfluridol modification of haloperidol or trifluperidol Pimozide modification of droperidol Fluspirilene modification of spiperone OH F CF N 3 Cl Penfluridol F O OH F NH N N Pimozide F F O N NH N F Fluspirilene The diphenylbutylpiperidine class can be considered as a modification of the fluorobutyrophenone class. Because of their high hydrophobic character, the compounds are inherently long acting. All are effective in the control of schizophrenia. Pimozide has been shown to be useful in treating acute exacerbation of schizophrenia and in reducing rate of relapse in chronic schizophrenic patients. It is also used for treatment of Tourette's syndrome. Chronic treatment of Tourette's syndrome with pimozide or haloperidol carries the risk of producing potentially irreversible tardive dyskinesia. Overall, side effects for the compounds resemble those produced by the fluorobutyrophenones. .
Recommended publications
  • 2D6 Substrates 2D6 Inhibitors 2D6 Inducers
    Physician Guidelines: Drugs Metabolized by Cytochrome P450’s 1 2D6 Substrates Acetaminophen Captopril Dextroamphetamine Fluphenazine Methoxyphenamine Paroxetine Tacrine Ajmaline Carteolol Dextromethorphan Fluvoxamine Metoclopramide Perhexiline Tamoxifen Alprenolol Carvedilol Diazinon Galantamine Metoprolol Perphenazine Tamsulosin Amiflamine Cevimeline Dihydrocodeine Guanoxan Mexiletine Phenacetin Thioridazine Amitriptyline Chloropromazine Diltiazem Haloperidol Mianserin Phenformin Timolol Amphetamine Chlorpheniramine Diprafenone Hydrocodone Minaprine Procainamide Tolterodine Amprenavir Chlorpyrifos Dolasetron Ibogaine Mirtazapine Promethazine Tradodone Aprindine Cinnarizine Donepezil Iloperidone Nefazodone Propafenone Tramadol Aripiprazole Citalopram Doxepin Imipramine Nifedipine Propranolol Trimipramine Atomoxetine Clomipramine Encainide Indoramin Nisoldipine Quanoxan Tropisetron Benztropine Clozapine Ethylmorphine Lidocaine Norcodeine Quetiapine Venlafaxine Bisoprolol Codeine Ezlopitant Loratidine Nortriptyline Ranitidine Verapamil Brofaramine Debrisoquine Flecainide Maprotline olanzapine Remoxipride Zotepine Bufuralol Delavirdine Flunarizine Mequitazine Ondansetron Risperidone Zuclopenthixol Bunitrolol Desipramine Fluoxetine Methadone Oxycodone Sertraline Butylamphetamine Dexfenfluramine Fluperlapine Methamphetamine Parathion Sparteine 2D6 Inhibitors Ajmaline Chlorpromazine Diphenhydramine Indinavir Mibefradil Pimozide Terfenadine Amiodarone Cimetidine Doxorubicin Lasoprazole Moclobemide Quinidine Thioridazine Amitriptyline Cisapride
    [Show full text]
  • Steven, Stacy (2012) the Pharmacology of the 5-HT2A Receptor and the Difficulty Surrounding Single Taret Models
    Steven, Stacy (2012) The pharmacology of the 5-HT2A receptor and the difficulty surrounding single taret models. MSc(R) thesis. http://theses.gla.ac.uk/3636/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] The pharmacology of the 5-HT2A receptor and the difficulty surrounding functional studies with single target models A thesis presented for the degree of Master of Science by research Stacy Steven April 2012 Treatment of many disorders can be frequently problematic due to the relatively non selective nature of many drugs available on the market. Symptoms can be complex and expansive, often leading to symptoms representing other disorders in addition to the primary reason for treatment. In particular mental health disorders fall prey to this situation. Targeting treatment can be difficult due to the implication of receptors in more than one disorder, and more than one receptor in a single disorder. In the instance of GPCRs, receptors such as the serotonin receptors (and in particular the 5-HT2A for the interest of this research) belong to a large family of receptors, the GPCR Class A super family.
    [Show full text]
  • Selective Labeling of Serotonin Receptors Byd-[3H]Lysergic Acid
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 12, pp. 5783-5787, December 1978 Biochemistry Selective labeling of serotonin receptors by d-[3H]lysergic acid diethylamide in calf caudate (ergots/hallucinogens/tryptamines/norepinephrine/dopamine) PATRICIA M. WHITAKER AND PHILIP SEEMAN* Department of Pharmacology, University of Toronto, Toronto, Canada M5S 1A8 Communicated by Philip Siekevltz, August 18,1978 ABSTRACT Since it was known that d-lysergic acid di- The objective in this present study was to improve the se- ethylamide (LSD) affected catecholaminergic as well as sero- lectivity of [3H]LSD for serotonin receptors, concomitantly toninergic neurons, the objective in this study was to enhance using other drugs to block a-adrenergic and dopamine receptors the selectivity of [3HJISD binding to serotonin receptors in vitro by using crude homogenates of calf caudate. In the presence of (cf. refs. 36-38). We then compared the potencies of various a combination of 50 nM each of phentolamine (adde to pre- drugs on this selective [3H]LSD binding and compared these clude the binding of [3HJLSD to a-adrenoceptors), apmo ie, data to those for the high-affinity binding of [3H]serotonin and spiperone (added to preclude the binding of [3H[LSD to (39). dopamine receptors), it was found by Scatchard analysis that the total number of 3H sites went down to 300 fmol/mg, compared to 1100 fmol/mg in the absence of the catechol- METHODS amine-blocking drugs. The IC50 values (concentrations to inhibit Preparation of Membranes. Calf brains were obtained fresh binding by 50%) for various drugs were tested on the binding of [3HLSD in the presence of 50 nM each of apomorphine (A), from the Canada Packers Hunisett plant (Toronto).
    [Show full text]
  • Current Biological Treatments of Schizophrenia
    Schizophrenia Block Adapted from the American Society for Clinical Psychopharmacology Model Curriculum * Learning Objectives • Identify major target symptoms of schizophrenia treatment • Become familiar with conventional & atypical antipsychotic medications • Recognize major side effects of antipsychotic medications • Recognize unique features of clozapine & depot antipsychotics Outline • Background about Schizophrenia • Dopamine Hypothesis • Dopamine Pathways • Efficacy of Anti-psychotics • Treats agitation • Prevents relapse • Compliance, Medication dose & relapse • Overview of an Antipsychotic Medication Trial • Different Anti-psychotic medications • Side effects of the Anti-psychotics • Common-EPS, TD, anti-cholinergic, metabolic syndrome, • Rare but serious-NMS • Antipsychotic selection and treatment strategies algorithm Dopamine Hypothesis of Schizophrenia Dopamine Hypothesis • Psychotic symptoms can be induced by dopamine agonists* • cocaine, amphetamines cause psychosis • All anti-psychotics are dopamine antagonists • Normal subjects-10% dopamine receptors occupied at baseline** • Schizophrenic subjects-20% dopamine receptors occupied at baseline** **Laruelle M, Quart J Nuc Med 1998;42:211 * Major Dopamine Pathways 1. Nigrostriatal tract- (extrapyramidal pathway) substantia nigra to caudate nucleus & putamen of the basal ganglia 2. Mesolimbic tract - midbrain tegmentum to nucleus accumbens & adjacent limbic structures 3. Mesocortical tract - midbrain tegmentum to anterior cortical areas 4. Tuberoinfundibular tract - arcuate &
    [Show full text]
  • Appendix 13C: Clinical Evidence Study Characteristics Tables
    APPENDIX 13C: CLINICAL EVIDENCE STUDY CHARACTERISTICS TABLES: PHARMACOLOGICAL INTERVENTIONS Abbreviations ............................................................................................................ 3 APPENDIX 13C (I): INCLUDED STUDIES FOR INITIAL TREATMENT WITH ANTIPSYCHOTIC MEDICATION .................................. 4 ARANGO2009 .................................................................................................................................. 4 BERGER2008 .................................................................................................................................... 6 LIEBERMAN2003 ............................................................................................................................ 8 MCEVOY2007 ................................................................................................................................ 10 ROBINSON2006 ............................................................................................................................. 12 SCHOOLER2005 ............................................................................................................................ 14 SIKICH2008 .................................................................................................................................... 16 SWADI2010..................................................................................................................................... 19 VANBRUGGEN2003 ....................................................................................................................
    [Show full text]
  • The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
    The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone
    [Show full text]
  • Formulary (List of Covered Drugs)
    3ODQ<HDU 202 Formulary (List of Covered Drugs) PLEASE READ: THIS DOCUMENT CONTAINS INFORMATION ABOUT THE DRUGS WE COVER IN THE FOLLOWING PLAN: $0 Cost Share AI/AN HMO Minimum Coverage HMO Silver 70 HMO Active Choice PPO Silver Opal 25 Gold HMO Silver 70 OFF Exchange HMO Amber 50 HMO Silver Opal 50 Silver HMO Silver 73 HMO Bronze 60 HDHP HMO Platinum 90 HMO Silver 87 HMO Bronze 60 HMO Ruby 10 Platinum HMO Silver 94 HMO Gold 80 HMO Ruby 20 Platinum HMO Jade 15 HMO Ruby 40 Platinum HMO This formulary was last updated on8//20. This formulary is VXEMHFWto change and all previous versions of the formulary no longer apply. For more recent information or other questions, please contact Chinese Community Health Plan Member Services at 1-888-775-7888 or, for TTY users, 1-877-681-8898, seven days a week from 8:00 a.m. to 8:00 p.m., or visit www.cchphealthplan.com/family-member -,-ϭ -,-ϭ"&* !#" + 5 5 ),-$+" %(%'.')/"+#" %&/"+ -%/"$)% "%&/"+ *& )&! %&/"+ 0 $(#" '"+ %&/"+ *& %&/"+ %&/"+ +)(2" &-%(.' %&/"+ +)(2" .1&-%(.' %&/"+ )&! .1&-%(.' !" .1&-%(.' dŚŝƐĨŽƌŵƵůĂƌLJǁĂƐůĂƐƚƵƉĚĂƚĞĚ8ͬϭͬϮϬϮϭ͘dŚŝƐĨŽƌŵƵůĂƌLJŝƐƐƵďũĞĐƚƚŽ ĐŚĂŶŐĞĂŶĚĂůůƉƌĞǀŝŽƵƐǀĞƌƐŝŽŶƐŽĨƚŚĞĨŽƌŵƵůĂƌLJŶŽůŽŶŐĞƌĂƉƉůLJ͘&ŽƌŵŽƌĞ ƌĞĐĞŶƚŝŶĨŽƌŵĂƚŝŽŶŽƌŽƚŚĞƌƋƵĞƐƚŝŽŶƐ͕ƉůĞĂƐĞĐŽŶƚĂĐƚŚŝŶĞƐĞŽŵŵƵŶŝƚLJ ,ĞĂůƚŚWůĂŶDĞŵďĞƌ^ĞƌǀŝĐĞƐĂƚϭͲϴϴϴͲϳϳϱͲϳϴϴϴŽƌ͕ĨŽƌddzƵƐĞƌƐ͕ ϭͲϴϳϳͲϲϴϭͲϴϴϵϴ͕ƐĞǀĞŶĚĂLJƐĂǁĞĞŬĨƌŽŵϴ͗ϬϬĂ͘ŵ͘ƚŽϴ͗ϬϬƉ͘ŵ͕͘ŽƌǀŝƐŝƚ ǁǁǁ͘ĐĐŚƉŚĞĂůƚŚƉůĂŶ͘ĐŽŵͬĨĂŵŝůLJͲŵĞŵďĞƌ !! %+)&,+ &%+&+&)$,#)0),# *+666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666I % + &%*6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666I
    [Show full text]
  • Diphenylbutylpiperidine Antipsychotic Drugs Inhibit Prolactin Receptor
    Gastroenterology 2020;158:1433–1449 Diphenylbutylpiperidine Antipsychotic Drugs Inhibit Prolactin Receptor Signaling to Reduce Growth of Pancreatic Ductal Adenocarcinoma in Mice Prasad Dandawate,1 Gaurav Kaushik,2 Chandrayee Ghosh,1 David Standing,1 Afreen Asif Ali Sayed,1 Sonali Choudhury,1 Dharmalingam Subramaniam,1 Ann Manzardo,3 Tuhina Banerjee,4 Santimukul Santra,4 Prabhu Ramamoorthy,1 Merlin Butler,3 Subhash B. Padhye,1,5 Joaquina Baranda,6 Anup Kasi,6 Weijing Sun,6 Ossama Tawfik,7 Domenico Coppola,8 Mokenge Malafa,8 Shahid Umar,2 Michael J. Soares,7,9,10,11 Subhrajit Saha,12 Scott J. Weir,1,13 Animesh Dhar,1 Roy A. Jensen,1,7 Sufi Mary Thomas,1,14 and Shrikant Anant1,2,5 1Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas; 2Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas; 3Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas; 4Department of Chemistry, Pittsburg State University, Pittsburg, Kansas; 5Interdisciplinary Science and Technology Research Academy, Abeda Inamdar College, University of Pune, Pune; 6Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas; 7Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; 8Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; 9Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas; 10Department
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Repurposing Diphenylbutylpiperidine-Class Antipsychotic Drugs for Host
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.05.447191; this version posted June 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Repurposing diphenylbutylpiperidine-class antipsychotic drugs for host- 2 directed therapy of Mycobacterium tuberculosis and Salmonella enterica 3 infections 4 Heemskerk MT1, Korbee CJ1, Esselink J1, Carvalho dos Santos C1,2, van Veen S1, Gordijn IF1, 5 Vrieling F1, Walburg KV1, Engele CG1, Dijkman K3, Wilson L1, Verreck FAW3, Ottenhoff 6 THM1* and Haks MC1*. 7 1Department of Infectious Diseases, Leiden University Medical Center, Leiden, The 8 Netherlands. 2Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, São 9 Paulo, Brazil. 3TB research group, Department of Parasitology, Biomedical Primate Research 10 Centre, Rijswijk, The Netherlands. 11 * contributed equally. 12 13 14 15 Corresponding author: Tom HM Ottenhoff 16 Dept. of Infectious Diseases 17 Leiden University Medical Center (LUMC) 18 Albinusdreef 2 19 2333 ZA Leiden 20 The Netherlands 21 Tel: +31 71 526 2620 22 E-mail: [email protected] 23 ORCID ID: 0000-0003-3706-3403 24 25 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.05.447191; this version posted June 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Current Topics in Medicinal Chemistry, 2016, 16, 3385-3403 REVIEW ARTICLE
    Send Orders for Reprints to [email protected] 3385 Cur rent Topics in Medicinal Chemistry, 2016, 16, 3385-3403 REVIEW ARTICLE ISSN: 1568-0266 eISSN: 1873-5294 Dopamine Targeting Drugs for the Treatment of Schizophrenia: Past, Impact Factor: 2.9 The international Present and Future journal for in-depth reviews on Current Topics in Medicinal Chemistry BENTHAM SCIENCE Peng Li*, Gretchen L. Snyder and Kimberly E. Vanover Intra-Cellular Therapies Inc, 430 East 29th Street, Suite 900, New York, NY 10016, USA Abstract: Schizophrenia is a chronic and debilitating neuropsychiatric disorder affecting approxi- mately 1% of the world’s population. This disease is associated with considerable morbidity placing a major financial burden on society. Antipsychotics have been the mainstay of the pharmacological treatment of schizophrenia for decades. The traditional typical and atypical antipsychotics demon- strate clinical efficacy in treating positive symptoms, such as hallucinations and delusions, while are A R T I C L E H I S T O R Y largely ineffective and may worsen negative symptoms, such as blunted affect and social withdrawal, as well as cognitive function. The inability to treat these latter symptoms may contribute to social Received: April 07, 2016 Revised: May 20, 2016 function impairment associated with schizophrenia. The dysfunction of multiple neurotransmitter Accepted: May 23, 2016 systems in schizophrenia suggests that drugs selectively targeting one neurotransmission pathway DOI: 10.2174/1568026616666160608 are unlikely to meet all the therapeutic needs of this heterogeneous disorder. Often, however, the un- 084834 intentional engagement of multiple pharmacological targets or even the excessive engagement of in- tended pharmacological targets can lead to undesired consequences and poor tolerability.
    [Show full text]
  • Central Nervous System (CNS) Agents
    Clinical Policy: Central Nervous System (CNS) Agents: Movement Disorders Reference Number: OH.PHAR.PPA.96 Effective Date: 01.01.2021 Last Review Date: 11.20 Line of Business: Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. MOVEMENT DISORDERS CLINICAL PA REQUIRED “PREFERRED” PA REQUIRED “NON-PREFERRED” AUSTEDO ® (deutetrabenazine)† INGREZZA® (valbenazine) TETRABENAZINE (generic of Xenazine®) † Quantity limit of 4 tablets per day Description Deutetrabenazine (Austedo®), tetrabenazine (Xenazine®) and valbenazine (Ingrezza®) are vesicular monoamine transporter 2 (VMAT2) inhibitors. FDA Approved Indication(s) Austedo is indicated for the treatment of: • Chorea associated with Huntington’s disease • Tardive dyskinesia (TD) in adults Ingrezza is indicated for the treatment of adults with tardive dyskinesia. Xenazine is indicated for the treatment of chorea associated with Huntington’s disease. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Austedo, Xenazine or Ingrezza are medically necessary when the following criteria are met: I. Initial Approval Criteria A. Chorea Associated with Huntington Disease (must meet all): Page 1 of 7 CLINICAL POLICY Central Nervous System (CNS) Agents: Movement Disorders 1. Diagnosis of chorea associated with Huntington disease; 2. Requested medication is either Austedo or Xenazine; 3. Member must meet labeled age requirements for requested medication; 4. If requested medication is Austedo member has had a trial and failure of tetrabenazine at maximally tolerated doses up to 100 mg per day, unless contraindicated or clinically significant adverse effects are experienced; 5.
    [Show full text]