Impact of Depressogenic- and Antidepressant-Like

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Depressogenic- and Antidepressant-Like Impact of depressogenic- and antidepressant-like challenges on monoamine system activities: in vivo electrophysiological characterization studies Chris A. Oosterhof Department of Cellular & Molecular Medicine University of Ottawa Thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree in Neuroscience © Chris A. Oosterhof, Ottawa, Canada, 2016 Table of contents Table of contents ............................................................................................................. ii Acknowledgements ........................................................................................................ iv Statement of contributions .............................................................................................. v List of figures ................................................................................................................. vi List of tables .................................................................................................................. vii Glossary ........................................................................................................................ viii Abstract .......................................................................................................................... xi 1) Major depressive disorder ............................................................................................... 1 2) Monoamine systems........................................................................................................ 3 2.1 The 5-HT system ....................................................................................................... 3 2.1.1 5-HT: Synthesis, storage, release, and metabolism ............................................ 6 2.1.2 SERT .................................................................................................................. 9 2.1.3 5-HT receptors.................................................................................................. 10 2.1.3.1 5-HT 1A receptors ....................................................................................... 11 2.1.3.2 5-HT 1A autoreceptors ................................................................................ 11 2.1.3.3 Postsynaptic intrasynaptic 5-HT 1A receptors ............................................ 12 2.1.3.4 Postsynaptic extrasynaptic 5-HT 1A receptors ............................................ 13 2.1.3.5 5-HT 1B/D receptors ..................................................................................... 14 2.1.3.6 5-HT 2A receptors ....................................................................................... 15 2.1.3.7 5-HT 2B receptors ....................................................................................... 17 2.1.3.8 5-HT 2C receptors ....................................................................................... 17 2.1.4 Abnormalities in the 5-HT system; relevance to MDD ................................... 18 2.2 The norepinephrine system ..................................................................................... 21 2.2.1 NE: Synthesis, storage, release, and metabolism ............................................. 23 2.2.2 NET .................................................................................................................. 24 2.2.2 NET .................................................................................................................. 25 2.2.3 Adrenergic receptors ........................................................................................ 25 2.2.3.1 α 1-adrenergic receptors .............................................................................. 26 2.2.3.2 α 2-adrenergic receptors .............................................................................. 27 2.2.3.3 ß-adrenoceptors. ........................................................................................ 29 2.2.4 Abnormalities in the NE system; relevance to MDD ....................................... 30 2.3 The dopamine system .............................................................................................. 33 2.3.1 DA: Synthesis, storage, release, and metabolism............................................. 35 2.3.2 DA receptors .................................................................................................... 37 2.2.3 Abnormalities in the DA system; relevance to MDD ...................................... 39 2.4 Monoamine system interactions .............................................................................. 41 2.4.1.1 NE & 5-HT: presynaptic interactions............................................................ 42 2.4.1.1 NE & 5-HT: presynaptic interactions............................................................ 43 2.4.1.2 NE & 5-HT: postsynaptic interactions .......................................................... 45 2.4.2.1 5-HT & DA: presynaptic interactions ........................................................... 46 2.4.2.2 5-HT & DA: postsynaptic interactions.......................................................... 48 2.4.3 DA-NE interactions .......................................................................................... 48 2.5 Antidepressants & monoamine systems .................................................................. 51 2.5.1 Selective serotonin reuptake inhibitors ............................................................ 53 2.5.2 5-HT 1A receptor agonists .................................................................................. 55 ii 2.5.3 Norepinephrine reuptake inhibitors .................................................................. 56 2.5.4 Serotonin/norepinephrine reuptake inhibitors .................................................. 58 2.5.5 Tricyclic antidepressants .................................................................................. 60 2.5.6 Mirtazapine....................................................................................................... 62 2.5.7 Vortioxetine ...................................................................................................... 63 2.5.8 Bupropion ......................................................................................................... 64 2.5.9 Monoamine oxidase inhibitors ......................................................................... 65 2.5.10 Ketamine ........................................................................................................ 66 2.5.11 Atypical antipsychotics .................................................................................. 67 2.5.11.1 Dibenzepines ........................................................................................... 68 2.5.11.2 Benzisoxazoles ........................................................................................ 71 2.5.11.3 Aripiprazole ............................................................................................. 72 2.5.12 Augmentation strategies ................................................................................. 73 2.5.12.1 Mirtazapine augmentation ....................................................................... 73 2.5.12.2 Bupropion augmentation ......................................................................... 74 2.5.12.3 Quetiapine augmentation......................................................................... 75 2.5.12.4 Risperidone augmentation ....................................................................... 76 2.5.12.5 Aripiprazole augmentation ...................................................................... 76 2.5.13 Non-pharmacological interventions ............................................................... 77 2.5.13.1 Deep brain stimulation ............................................................................ 77 2.5.13.2 Vagus nerve stimulation .......................................................................... 79 2.5.13.3 Electroconvulsive therapy ....................................................................... 80 2.5.13.4 Sleep deprivation ..................................................................................... 80 2.5.14 Study rationale chapter I-III ........................................................................... 82 3) Stress and depression .................................................................................................... 85 3.1 What is stress? ......................................................................................................... 85 3.2 The HPA axis .......................................................................................................... 86 3.3 The HPA axis in MDD ............................................................................................ 87 3.4. Prenatal stress: an animal model for depression .................................................... 89 3.5 Study rationale chapter IV....................................................................................... 91 Chapter I: Sustained asenapine ......................................................................................... 93 Chapter II: Acute brexpiprazole ...................................................................................... 130 Chapter III: Sustained brexpiprazole ............................................................................... 167 Chapter IV: Prenatal stress .............................................................................................
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
    USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp.
    [Show full text]
  • Beyond Monoamines Towards the Development of Novel Antidepressants Oltre Le Monoamine Al Fine Di Sviluppare Nuovi Farmaci Antidepressivi
    Original article • Articolo originale Beyond monoamines towards the development of novel antidepressants Oltre le monoamine al fine di sviluppare nuovi farmaci antidepressivi M. Fornaro1,2 1 Department of “Scienze della Formazione”, University of Catania, Italy; 2 Department of Psychiatry, Veteran Affairs (VA) Hospital, University of California (UCSD), La Hoya, San Diego, CA, USA Summary ated giving priority to RCTs and meta-analyses. At present, the pharmacological management of depression appears is Objective characterized by a wide variety of different augmentation or Herein, a concise review is presented on the current and most switching approaches (Fig. 1). Nonetheless, response rates promising antidepressant pharmacological agents for manage- remain substantially unsatisfactory, thus prompting for the ment of depression. development of novel agents with different mechanisms of action. Materials and methods A PubMed search (1966 - February 2012) was performed using Conclusions the following keywords or their combination: “depression”; Shifting the interest for novel antidepressant drugs beyond the “major depressive disorder”: “antidepressants”; “novel antide- monoaminergic modulation represents (Tables I-III) an intriguing pressant targets”; “monoamine”; “novel antidepressants”. Ad- opportunity to enhance response rates of depression, although ditional literature sources, including most authoritative and up- other issues, including revision of current nosological bounda- dated edited books or pamphlets were examined accordingly.
    [Show full text]
  • Bifeprunox: a Novel Antipsychotic Agent with Partial Agonist Properties at Dopamine D2 and Serotonin 5-HT1A Receptors
    DRUG EVALUATION Bifeprunox: a novel antipsychotic agent with partial agonist properties at dopamine D2 and serotonin 5-HT1A receptors Marie-Louise G Most second-generation, atypical, dopamine (DA) D2/5-HT2 blocking antipsychotics still Wadenberg induce extrapyramidal side effects (EPS) in higher doses. Weight gain and metabolic University of Kalmar, disturbances are also a problem, and negative and cognitive symptoms have not been Department of Natural Sciences, Norra Vagen 49, sufficiently addressed. The current brain DA mesolimbic hyperactive/mesocortical SE-391 82 Kalmar, Sweden hypoactive hypothesis of schizophrenia suggests that DA D2/5-HT1A receptor partial agonist Tel.: +46 480 446 277; properties may be more efficacious with less side effects. DA D2 receptor partial agonists Fax: +46 480 446 244; may stabilize a hyperactive/hypoactive DA condition. Additional 5-HT stimulation may marie-louise.wadenberg@ 1A hik.se enhance therapeutic efficacy and also improve EPS liability profile. In clinical trials in schizophrenic patients, the novel DA D2/5-HT1A partial agonist bifeprunox indeed demonstrates therapeutic efficacy, a safe EPS profile and appears beneficial regarding weight gain, prolactin, blood lipid and glucose levels and cardiac rhythm. The data on bifeprunox are promising and suggest that combined DA D2/5-HT1A partial agonism may well be important properties for future-generation antipsychotics. Bifeprunox, a novel antipsychotic agent with a (DA D1, D2, D4, 5-HT2A/C, 5-HT1A, hista- so-called third-generation atypical pharmacolog- mine H1, α1, α2, cholinergic muscarinic recep- ical profile, is currently in clinical trials and tor affinity) and comparatively lower affinity for expected to launch as a schizophrenia therapy in the DA D2 receptor than traditional APDs.
    [Show full text]
  • HTR1A Polymorphisms and Clinical Efficacy Of
    International Journal of Neuropsychopharmacology, (2016) 19(5): 1–10 doi:10.1093/ijnp/pyv125 Advance Access publication November 14, 2015 Research Article research article HTR1A Polymorphisms and Clinical Efficacy of Antipsychotic Drug Treatment in Schizophrenia: A Meta-Analysis Yoshiteru Takekita, MD, PhD; Chiara Fabbri, MD; Masaki Kato, MD, PhD; Yosuke Koshikawa, MA; Aran Tajika, MD; Toshihiko Kinoshita, MD, PhD; Alessandro Serretti, MD, PhD Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Drs Takekita, Fabbri, and Serretti); Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan (Drs Takekita, Kato, Koshikawa, and Kinoshita); Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan (Dr Tajika). Correspondence: Yoshiteru Takekita, MD, PhD, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Viale Carlo Pepoli 5, Bologna, 40123, Italy ([email protected]). Abstract Background: This meta-analysis was conducted to evaluate whether HTR1A gene polymorphisms impact the efficacy of antipsychotic drugs in patients with schizophrenia. Methods: Candidate gene studies that were published in English up to August 6, 2015 were identified by a literature search of PubMed, Web of Science, and Google scholar. Data were pooled from individual clinical trials considering overall symptoms, positive symptoms and negative symptoms, and standard mean differences were calculated by applying a random-effects model. Results: The present meta-analysis included a total of 1281 patients from 10 studies. Three polymorphisms of HTR1A (rs6295, rs878567, and rs1423691) were selected for the analysis. In the pooled data from all studies, none of these HTR1A polymorphisms correlated significantly with either overall symptoms or positive symptoms.
    [Show full text]
  • The Noradrenaline Transporter As Site of Action for the Anti-Parkinson Drug Amantadine
    Neuropharmacology 62 (2012) 1708e1716 Contents lists available at SciVerse ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm The noradrenaline transporter as site of action for the anti-Parkinson drug amantadine Christian Sommerauer a, Patrick Rebernik a, Harald Reither a, Christian Nanoff b, Christian Pifl a,* a Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria b Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Wahringerstrasse 13a, A-1090 Vienna, Austria article info abstract Article history: Amantadine is an established antiparkinsonian drug with a still unclear molecular site of action. In vivo Received 5 September 2011 studies on rodents, in vitro studies on tissue of rodents as well as binding studies on post mortem human Received in revised form tissue implicate monoamine transporters and NMDA receptors. In order to re-examine its action at 17 November 2011 human variants of these proteins on intact cells we established cells stably expressing the human NR1/2A Accepted 28 November 2011 NMDA-receptor, noradrenaline transporter (NAT) or dopamine transporter (DAT) and tested the activity of amantadine in patch-clamp, uptake, release, and cytotoxicity experiments. Amantadine was less Keywords: potent in blockade of NMDA-induced inward currents than in blockade of noradrenaline uptake and in Amantadine Noradrenaline transporter induction of inward currents in NAT expressing cells. It was 30 times more potent in blocking uptake in e m Carrier-mediated release NAT- than in DAT cells. Amantadine induced NAT-mediated release at concentrations of 10 100 Min Transport-related currents superfusion experiments and blocked NAT-mediated cytotoxicity of the parkinsonism inducing neuro- þ NMDA-receptor toxin 1-methyl-4-phenyl-pyridinium (MPP ) at concentrations of 30e300 mM, whereas 300e1000 mM Parkinson’s disease amantadine was necessary to block NMDA-receptor mediated cytotoxicity.
    [Show full text]
  • Steven, Stacy (2012) the Pharmacology of the 5-HT2A Receptor and the Difficulty Surrounding Single Taret Models
    Steven, Stacy (2012) The pharmacology of the 5-HT2A receptor and the difficulty surrounding single taret models. MSc(R) thesis. http://theses.gla.ac.uk/3636/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] The pharmacology of the 5-HT2A receptor and the difficulty surrounding functional studies with single target models A thesis presented for the degree of Master of Science by research Stacy Steven April 2012 Treatment of many disorders can be frequently problematic due to the relatively non selective nature of many drugs available on the market. Symptoms can be complex and expansive, often leading to symptoms representing other disorders in addition to the primary reason for treatment. In particular mental health disorders fall prey to this situation. Targeting treatment can be difficult due to the implication of receptors in more than one disorder, and more than one receptor in a single disorder. In the instance of GPCRs, receptors such as the serotonin receptors (and in particular the 5-HT2A for the interest of this research) belong to a large family of receptors, the GPCR Class A super family.
    [Show full text]
  • M100907, a Serotonin 5-HT2A Receptor Antagonist and Putative Antipsychotic, Blocks Dizocilpine-Induced Prepulse Inhibition Defic
    M100907, a Serotonin 5-HT2A Receptor Antagonist and Putative Antipsychotic, Blocks Dizocilpine-Induced Prepulse Inhibition Deficits in Sprague–Dawley and Wistar Rats Geoffrey B. Varty, Ph.D., Vaishali P. Bakshi, Ph.D., and Mark A. Geyer, Ph.D. a In a recent study using Wistar rats, the serotonergic 5-HT2 1 receptor agonist cirazoline disrupts PPI. As risperidone a receptor antagonists ketanserin and risperidone reduced the and M100907 have affinity at the 1 receptor, a final study disruptive effects of the noncompetitive N-methyl-D- examined whether M100907 would block the effects of aspartate (NMDA) antagonist dizocilpine on prepulse cirazoline on PPI. Risperidone partially, but inhibition (PPI), suggesting that there is an interaction nonsignificantly, reduced the effects of dizocilpine in Wistar between serotonin and glutamate in the modulation of PPI. rats, although this effect was smaller than previously In contrast, studies using the noncompetitive NMDA reported. Consistent with previous studies, risperidone did antagonist phencyclidine (PCP) in Sprague–Dawley rats not alter the effects of dizocilpine in Sprague–Dawley rats. found no effect with 5-HT2 antagonists. To test the hypothesis Most importantly, M100907 pretreatment fully blocked the that strain differences might explain the discrepancy in effect of dizocilpine in both strains; whereas SDZ SER 082 these findings, risperidone was tested for its ability to had no effect. M100907 had no influence on PPI by itself reduce the PPI-disruptive effects of dizocilpine in Wistar and did not reduce the effects of cirazoline on PPI. These and Sprague–Dawley rats. Furthermore, to determine studies confirm the suggestion that serotonin and glutamate which serotonergic receptor subtype may mediate this effect, interact in modulating PPI and indicate that the 5-HT2A the 5-HT2A receptor antagonist M100907 (formerly MDL receptor subtype mediates this interaction.
    [Show full text]
  • CLINICAL PHARMACOLOGY and BIOPHARMACEUTICS REVIEW(S) NDA 22561 Clinical Pharmacology Amendment Memo
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 022561Orig1s000 CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S) NDA 22561 Clinical Pharmacology Amendment Memo NDA Number: 22561 Submission Date: May 30, 2018 Submission Type: Standard Brand Name: Mavenclad Generic Name: Cladribine Dosage Form and Strength: Tablets, 10 mg Route of Administration: Oral Proposed Indication: Treatment of Relapsing forms of Multiple Sclerosis (RMS) Applicant: EMD Serono, Inc. OCP Review Team: Hristina Dimova, Ph.D., Angela Men, M.D., Ph.D., Mehul Mehta, Ph.D. This review is an amendment of the NDA 22561 review for Mavenclad, (cladribine in DARRTS on March 13, 2019) focusing on a new proposed Post-marketing Requirement (PMR). Background of Metabolism and in-vitro studies results: Cladribine is not a substrate of cytochrome P450 enzymes and does not show significant potential to act as inhibitor of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Cladribine has no clinically meaningful inductive effect on CYP1A2, CYP2B6 and CYP3A4 enzymes. Transporter Systems: Cladribine is a substrate of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), equilibrative nucleoside transporter 1 (ENT1) and concentrative nucleoside transporter 3 (CNT3). New PMR: Conduct a clinical drug-drug interaction (DDI) study to evaluate the effect of cladribine on the pharmacokinetics (PK) of oral contraceptives. Include an evaluation of the effect on the components ethinyl estradiol (EE) and norelgestromin (NGMN). Rationale: No in vivo DDI study has been conducted to evaluate the effect of cladribine on systemically acting hormonal contraceptives. Currently it is unknown whether cladribine may reduce the effectiveness of hormonal contraceptives. Considering the in vitro study results described in Section 3.3.3.
    [Show full text]
  • Selective Labeling of Serotonin Receptors Byd-[3H]Lysergic Acid
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 12, pp. 5783-5787, December 1978 Biochemistry Selective labeling of serotonin receptors by d-[3H]lysergic acid diethylamide in calf caudate (ergots/hallucinogens/tryptamines/norepinephrine/dopamine) PATRICIA M. WHITAKER AND PHILIP SEEMAN* Department of Pharmacology, University of Toronto, Toronto, Canada M5S 1A8 Communicated by Philip Siekevltz, August 18,1978 ABSTRACT Since it was known that d-lysergic acid di- The objective in this present study was to improve the se- ethylamide (LSD) affected catecholaminergic as well as sero- lectivity of [3H]LSD for serotonin receptors, concomitantly toninergic neurons, the objective in this study was to enhance using other drugs to block a-adrenergic and dopamine receptors the selectivity of [3HJISD binding to serotonin receptors in vitro by using crude homogenates of calf caudate. In the presence of (cf. refs. 36-38). We then compared the potencies of various a combination of 50 nM each of phentolamine (adde to pre- drugs on this selective [3H]LSD binding and compared these clude the binding of [3HJLSD to a-adrenoceptors), apmo ie, data to those for the high-affinity binding of [3H]serotonin and spiperone (added to preclude the binding of [3H[LSD to (39). dopamine receptors), it was found by Scatchard analysis that the total number of 3H sites went down to 300 fmol/mg, compared to 1100 fmol/mg in the absence of the catechol- METHODS amine-blocking drugs. The IC50 values (concentrations to inhibit Preparation of Membranes. Calf brains were obtained fresh binding by 50%) for various drugs were tested on the binding of [3HLSD in the presence of 50 nM each of apomorphine (A), from the Canada Packers Hunisett plant (Toronto).
    [Show full text]
  • Covalent Agonists for Studying G Protein-Coupled Receptor Activation
    Covalent agonists for studying G protein-coupled receptor activation Dietmar Weicherta, Andrew C. Kruseb, Aashish Manglikb, Christine Hillera, Cheng Zhangb, Harald Hübnera, Brian K. Kobilkab,1, and Peter Gmeinera,1 aDepartment of Chemistry and Pharmacy, Friedrich Alexander University, 91052 Erlangen, Germany; and bDepartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Brian K. Kobilka, June 6, 2014 (sent for review April 21, 2014) Structural studies on G protein-coupled receptors (GPCRs) provide Disulfide-based cross-linking approaches (17, 18) offer important insights into the architecture and function of these the advantage that the covalent binding of disulfide-containing important drug targets. However, the crystallization of GPCRs in compounds is chemoselective for cysteine and enforced by the active states is particularly challenging, requiring the formation of affinity of the ligand-pharmacophore rather than by the elec- stable and conformationally homogeneous ligand-receptor com- trophilicity of the cross-linking function (19). We refer to the plexes. Native hormones, neurotransmitters, and synthetic ago- described ligands as covalent rather than irreversible agonists nists that bind with low affinity are ineffective at stabilizing an because cleavage may be promoted by reducing agents and the active state for crystallogenesis. To promote structural studies on disulfide transfer process is a reversible chemical reaction the pharmacologically highly relevant class
    [Show full text]
  • The Adrenergic Control of Lower Esophageal Sphincter Function: an EXPERIMENTAL MODEL of DENERVATION SUPERSENSITIVITY
    The Adrenergic Control of Lower Esophageal Sphincter Function: AN EXPERIMENTAL MODEL OF DENERVATION SUPERSENSITIVITY Anthony J. DiMarino, Sidney Cohen J Clin Invest. 1973;52(9):2264-2271. https://doi.org/10.1172/JCI107413. To evaluate the adrenergic regulation of lower esophageal sphincter (LES) function, LES pressure, LES relaxation during swallowing, and blood pressure were measured in the anesthetized opossum, Didelphis virginiana, during intravenous administration of alpha and beta adrenergic agonists and antagonists. Studies were done in controls and animals adrenergically denervated with 6-hydroxydopamine. Alpha adrenergic agonists (norepinephrine, phenylephrine) increased LES pressure and blood pressure, whereas a beta adrenergic agonist (isoproterenol) decreased both pressures. Alpha adrenergic antagonism (phentolamine) reduced basal LES pressure by 38.3±3.8% (mean ±SEM) (P < 0.001). Beta adrenergic antagonism (propranolol) had no significant effect on either basal LES pressure or percent of LES relaxation with swallowing. After adrenergic denervation with 6-hydroxydopamine, basal LES pressure was reduced by 22.5±5.3% (P < 0.025) but LES relaxation during swallowing was unaltered. In denervated animals, both LES pressure and blood pressure dose response curves showed characteristics of denervation supersensitivity to alpha but not to beta adrenergic agonists. These studies suggest: (a) a significant portion of basal LES pressure is dependent upon alpha adrenergic stimulation; (b) LES relaxation during swallowing is not an adrenergically mediated response; c( ) the LES pressure response to alpha adrenergic agonists after 6-hydroxydopamine may serve as a model of denervation supersensitivity in the gastrointestinal tract. Find the latest version: https://jci.me/107413/pdf The Adrenergic Control of Lower Esophageal Sphincter Function AN EXPERIMENTAL MODEL OF DENERVATION SUPERSENSITIVITY ANTHoNY J.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]