Zur Geschichte Des Faches Chemie

Total Page:16

File Type:pdf, Size:1020Kb

Zur Geschichte Des Faches Chemie 1 Kurze Übersicht über die Entwicklung des Fachs Chemie an der Universität Marburg von 1609 bis zur Gegenwart Neunte, verbesserte und ergänzte Auflage Fachbereich Chemie der Philipps-Universität Marburg, Februar 2020 2 Herausgegeben vom Dekanat des Fachbereichs Chemie der Philipps−Universität Hans−Meerwein−Straße 4, 35032 Marburg, Telefon 06421/28-25543 Web-Adresse: https://www.uni-marburg.de/de/fb15/fachbereich/dekanat Verantwortlich für den Inhalt: Prof. i. R. Dr. Christian Reichardt (unter Mitarbeit von Dorothea Schulz und Michael Marsch). Der Herausgeber dankt für die zahlreichen wertvollen Hinweise zur Verbesserung und Ergänzung dieser Übersicht. Besonderen Dank an Dr. Carsten Lind vom Universitätsarchiv Marburg, an Prof. Dr. Christoph Meinel, Universität Regensburg und an Dr. Norbert Nail, Universität Marburg. Es gilt die jeweils letzte Auflage! Hinweis 1 Eine aktualisierte Fassung dieser Übersicht kann unter der Web-Adresse https://www.uni-marburg.de/de/fb15/fachbereich/dekanat/chemie.pdf eingesehen und heruntergeladen werden. Hinweis 2 Diese Übersicht wurde vor allem unter Benutzung folgender Quellen zusammengestellt: (a) Christoph Meinel: Die Chemie an der Universität Marburg seit Beginn des 19. Jahrhunderts – Ein Beitrag zu ihrer Entwicklung als Hochschulfach. Band 3 der Schriftenreihe Academia Marburgensis, herausgegeben von der Philipps- Universität; Verlag N. G. Elwert, Marburg, 1978. (b) Rudolf Schmitz: Die Naturwissenschaften an der Philipps-Universität Marburg 1527–1977. Verlag N. G. Elwert, Marburg, 1978. (c) Franz Gundlach, Inge Auerbach (Bearbeiter): Catalogus professorum Academiae Marbur- gensis. Bd. 1 (1527-1910), Bd. 2 (1911-1971), Bd. 3/ Teil I und II (1971-1991). Verlag N. G. Elwert, Marburg, 1927, 1979 und 2000/2001. – Siehe auch Marburger Professorenkatalog online (https://www.uni-marburg.de/uniarchiv/pkat). ‒ Die Kurzbiografien noch lebender Personen wurden, soweit möglich, durch deren direkte Befragung durch den Herausgeber die- ser Übersicht vervollkommnet. – Russische Namen wurden nach dem Duden transkribiert. (d) Chronik der Königlich-Preussischen Universität Marburg 1887-1941; Chronik der Philipps-Universität Marburg 1941-1963 (mit wechselndem Titel; enthält u.a. die jeweiligen Jahresberichte der Direktoren des Chemischen und des Physikalisch-chemischen Instituts). (e) Neuere Chronik: https://www.uni-marburg.de/de/fb15/fachbereich/profil_und_chronik/ chronik-1/geschichte-der-marburger-chemie (f) Wilhelm Ganzenmüller: Das chemische Laboratorium der Universität Marburg im Jahre 1615. Angewandte Chemie 1941, 54, 215–217; wieder abgedruckt in: W. Ganzenmüller: Beiträge zur Geschichte der Technologie und der Alchemie. Verlag Chemie, Weinheim, 1956, S. 314-322; sowie in: Medizinhistorisches Journal 1967, 2, 68-77. (g) Dekanat des Fachbereichs Chemie der Philipps-Universität Marburg (Hrsg.): Wissen- schaftliche Aktivitäten des Fachbereichs Chemie der Philipps-Universität Marburg im Jahr 3 xxxx. Seit 1971 jährlich erscheinende Broschüre, zuletzt erschienen 2019 für das Jahr 2018; erhältlich im Dekanat des Fb Chemie Marburg ( → https://www.uni-marburg.de/de/fb15/ fachbereich/dekanat). (h) Christian Reichardt (unter Mitarbeit von Dorothea Schulz und Michael Marsch): Kurze Übersicht über die Entwicklung des Fachs Chemie an der Philipps–Universität Marburg von 1609 bis zur Gegenwart. 1. bis 8. Auflage, Dekanat des Fachbereichs Chemie, Marburg, 2002, 2005, 2009, 2012, 2013, 2014, 2015 und 2017. (i) C. Reichardt: Laboratorien und Institute für Chemie an der Universität Marburg von 1609 bis zur Gegenwart. In K. Schaal (Hrsg.): Von mittelalterlichen Klöstern zu modernen Insti- tutsgebäuden – aus der Baugeschichte der Philipps-Universität Marburg. Buchreihe Acade- mia Marburgensis, Band 15, S. 83-108; Waxmann-Verlag, Münster, New York, 2019. → Siehe daselbst auch S. 25-33 und 65-81 (Barfüßerkloster, Am Plan/Barfüßerstraße) sowie S. 128-131 (Chemisches Institut, Bahnhofstraße 7). (j) Fachschaft Chemie der Philipps-Universität Marburg (Hrsg.): Kritische Blätter (Kurz- fassung: Fliegende Blätter), 1971-2017 ( → https://www.uni-marburg.de/fb15/fachschaft/ fs_publi). → Marburger Chemiegeschichte aus studentischer Sicht. (k) Kürschners Deutscher Gelehrten-Kalender. 30. Ausgabe, Verlag De Gruyter, Berlin, Boston, 2018. (l) Die Zugriffe auf die angegebenen Internet-Adressen (www, Web) erfolgten im November 2019. Hinweis 3 Bildergalerien im frei zugänglichen Foyer des Fachbereichs Chemie (Neubau) enthalten Bildnisse von ehemaligen bedeutenden Marburger Chemikern und Physikochemikern, deren Kurzbiografien in diese Übersicht aufgenommen wurden. Eine weitere Bildergalerie umfasst die Ehrendoktoren der Fachbereiche Chemie und Physikalische Chemie, deren Kurz- biografien in dieser Übersicht ebenfalls enthalten sind (siehe S. 135-140). Ältere Bilder Marburger Professoren findet man bei C. Graepler: Imagines Professorum Academiae Marburgensis – Katalog von Bildnissen Marburger Hochschullehrer aus fünf Jahrhunderten. Verlag Elwert, Marburg, 1977 ( → Hartmann S. 32; Waldschmiedt S. 60; Moench S. 79; Wurzer S. 88; Bunsen S. 103; Carius S. 119; Zincke S. 122). → Siehe auch die beiden Wandtafeln mit Professorenbildnissen im westlichen Kreuzgang der Alten Universität Marburg, Eingang Reitgasse oder Lahntor 3 (oberhalb des Rudolfsplatzes). Je eine Kopie des Ölgemäldes „Bunsen zum Abschied von Marburg“ hängt im Foyer des neuen Fachbereichsgebäudes (Hans-Meerwein-Straße 4/Nordeingang) und in der Bibliothek Chemie (Hans-Meerwein-Straße 6). Das Original befindet sich im Universitätsmuseum Marburg (siehe S. 149-150). Eine Kopie des barocken Gedenksteins zur Eröffnung des zweiten Chemischen Labora- toriums in Marburg im Jahr 1686 hängt im Südeingang des neuen Fachbereichsgebäudes auf dem Campus Lahnberge (Hans-Meerwein-Straße 4). Eine Kopie der Bronzetafel, die 1981 von der Deutschen Bunsen-Gesellschaft am Deutsch- ordenshaus am Firmaneiplatz angebracht wurde, steht im Nordeingang des neuen Fach- bereichsgebäudes auf dem Campus Lahnberge (Hans-Meerwein-Straße 4). 4 Z u m G e l e i t Diese kurze Übersicht zur Entwicklung des Fachs Chemie an der Philipps-Universität Marburg erschien in erster Auflage im Jubiläumsjahr 2002 als Beitrag zur 475. Wiederkehr ihrer Gründung durch Landgraf Philipp den Großmütigen im Jahre 1527. Wegen des großen Interesses waren die erste und die sieben weiteren Auflagen schnell vergriffen, so dass wir nun 2020 eine neunte, wiederum korrigierte, verbesserte und ergänzte Auflage vorlegen. Äußerer Anlass für die dritte Auflage 2009 war die 400. Wiederkehr der Gründung des ersten deutschen Lehrstuhls für Chemie durch Landgraf Moritz von Hessen-Kassel. Mit der Einsetzung von Johannes Hartmann (siehe Bild auf S. 7 und 143) zum ersten ordentlichen Professor für Chymiatrie (dem der Heilkunde verpflichteten Teil der Chemie) wurde 1609 in Marburg die erste Professur für Chemie und Pharmazeutische Chemie in der ganzen Welt eingerichtet. Hartmann errichtete im gleichen Jahr auch das weltweit erste universitäre chemische Unterrichtslaboratorium (Laboratorium chymicum publicum), das im Collegium philosophicum der Universität im ehemaligen Barfüßerkloster des Franziskanerordens an der Ecke Barfüßerstraße 1/Am Plan untergebracht war. In diesem Laboratorium wurden Studen- ten unter Hartmanns Anleitung vor allem in der Anfertigung von Arzneimitteln unterwiesen. Im Jahr 2015 hat die Gesellschaft Deutscher Chemiker den Nachfolgebau des Hartmannschen Laboratoriums, das jetzige Institut für Sportwissenschaften und Motologie, zur „Historischen Stätte der Chemie“ deklariert. Damit wurde eine Tradition begründet, der wir uns heute, nach über 400 Jahren Chemie in Marburg (mit einigen Unterbrechungen), noch immer verpflichtet fühlen. Der genius loci dieser kleinen hessischen Provinzuniversität hat es über Jahrhunderte hinweg vermocht, an diesem Ort eine erstaunliche Anzahl angesehener Naturwissenschaftler zu versammeln, da- runter zahlreiche Chemiker und Physikochemiker, die es zu Weltruhm gebracht haben. Allein die Namen von fünf Chemie-Nobelpreisträgern (Hans Fischer 1930; Adolf Butenandt 1939; Otto Hahn 1944; Karl Ziegler 1963; Georg Wittig 1979) sind mit der Philipps-Universität verbunden (siehe deren Kurzbiografien). Ihre ehemalige Wirkungsstätte als Studenten und Hochschullehrer, das Alte Chemische Institut in der Bahnhofstraße 7, wurde bereits 2006 durch die Gesellschaft Deutscher Chemiker zur „Historischen Stätte der Chemie“ erhoben, vor allem aber wegen des Wirkens von Hans Meerwein, der dieses Institut von 1929 bis 1952 erfolgreich leitete und dort wesentliche Beiträge zur synthetischen und physikalisch-organi- schen Chemie erarbeitete. In diesem, grundlegend renovierten Gebäude befindet sich nun seit Dezember 2011 auch das CHEMIKUM MARBURG. Dass sich die Qualität von Forschung und Lehre am Fachbereich Chemie der Philipps- Universität (seit 2014 im zweiten Neubau auf dem Campus Lahnberge) auch heute noch sehen lassen kann, zeigt die Wahl dieses Fachbereichs zum Center of Excellence durch den Fonds der Chemischen Industrie, Frankfurt (Main), [a] und seinem guten Abschneiden bei den Hochschulrankings des Centrums für Hochschulentwicklungen (CHE), Gütersloh, [b,c,d] und des FOCUS-Magazins, München. [e] Die vor einigen Jahren erfolgte Ablösung des bisherigen Diplom-Studiengangs Chemie durch einen Bachelor- (B. Sc. ab WS 2006/07) und einen Master-Studiengang (M. Sc. ab WS 2009/10) im Rahmen des Bologna-Prozesses zur Schaff- ung eines gemeinsamen europäischen Hochschulraums hat zu einer weiteren Modernisierung und Intensivierung
Recommended publications
  • Boron-Nitrogen Compounds
    springer.com Chemistry : Inorganic Chemistry Niedenzu, Kurt, Dawson, J.W. Boron-Nitrogen Compounds Although the chemistry of boron is still relatively young, it is developing at a pace where even specific areas of research are difficult to compile into a monograph. Besides the boron hydrides, boron-nitrogen compounds are among the most fascinating derivatives of boron. Nitrogen compounds exist in a wide variety of molecular structures and display many interesting properties. The combination of nitrogen and boron, however, has some unusual features that are hard to match in any other combination of elements. This situation was first recognized by ALFRED STOCK and it seems proper to pay tribute to his outstanding work in the area of boron chemistry. One should realize that about forty years ago, STOCK and his coworkers had to develop completely new experimental techniq'\les and that no guidance for the interpreta• tion of their rather unusual data had been advanced by theoretical chemists. In this monograph an attempt has been made to explore the general characteristics of structure and the principles involved in the preparation and reactions of boron-nitroge~ compounds. It was a somewhat difficult task to select that information which appears to be of the most Springer interest to "inorganic and general chemistry" since the electronic relationship between a boron- nitrogen and a carbon-carbon grouping is reflected in the "organic" character of many of the Softcover reprint of the 1st reactions and compounds. original 1st ed. 1965, VIII,
    [Show full text]
  • Li (Lisabeth) Klemm, Geb. Hermann (09.10.1895 Eberswalde - 15.10.1948 Kiel) Forscherin Neben Ihrem Mann Wilhelm Klemm (1896 - 1985)
    http://www.uni-kiel.de/anorg/lagaly/group/klausSchiver/klemm.pdf Please take notice of: (c)Beneke. Don't quote without permission. Li (Lisabeth) Klemm, geb. Hermann (09.10.1895 Eberswalde - 15.10.1948 Kiel) Forscherin neben ihrem Mann Wilhelm Klemm (1896 - 1985) Klaus Beneke Institut für Anorganische Chemie der Christian-Albrechts-Universität der Universität D-24098 Kiel [email protected] (Juli 2005) 2 Li (Lisabeth) Klemm, geb. Herrmann (09.10.1895 Eberswalde - 15.10.1948 Kiel) Lisabeth (Li) Hermann wurde in Eberswalde geboren und verbrachte ihre Jugend in Danzig und Breslau. Ihr Vater war der bekannte Forstwissenschaftler Geheimrat Herrmann. Ab 1917 studierte Li Herrmann in Danzig und später in Breslau Chemie und promovierte dort 1921 mit magna cum laude bei Heinrich Biltz1 mit einer Doktorarbeit der die Zusammenhänge zwischen Methylierung der Harnsäure und den Dissoziationskonstanten dieser Methyl-Derivate betraf. Danach arbeitete Li Herrmann als Assistentin an der Landwirtschaftlichen Hochschule in Breslau bei Friedrich Wilhelm Berkner2. Dort richtete sie in dem Institut für Pflanzenbau ein neues chemisches Laboratorium ein. 1 Heinrich Biltz (26.05.1865 Berlin - 29.10.1943 Breslau). Heinrich Biltz begann 1885 mit dem Studium der Chemie an der Universität Berlin und ging im 2. Semester an die Universität Göttingen wo er unter Victor Meyer 1888 promovierte. Er wurde Assistent unter Victor Meyer in Heidelberg8, wechselte aber im folgenden Jahr in gleicher Funktion an die Universität Greifswald, wo er sich 1891 habilitierte. Er wurde 1897 als außerordentlicher Professor und Leiter der anorganischen Abteilung an die Universität Kiel berufen. Im Jahre 1911 wurde Heinrich Biltz als Ordinarius und Institutsleiter an die Universität nach Breslau berufen, wo er 1933 emeritiert wurde.
    [Show full text]
  • Curriculum Vitae Professor Dr. Martin Jansen
    Curriculum Vitae Professor Dr. Martin Jansen Name: Martin Jansen Born: 5 November 1944 Main areas of research: preparative solid-state chemistry, crystal chemistry, materials research, structure-property relationship of solids Since 1998, he has been a member of the scientific council of the Max Planck Society and a director at the Max Planck Institute for solid-state research in StuttgartHe has developed a concept for plan- ning solid state syntheses, combining computational and experimental tools, that is pointing the way to rational and efficient discovery of new materials. Academic and Professional Career since 1998 Director at the Max Planck Institute for Solid State Research, Stuttgart and Honorary Professor at the University of Stuttgart, Germany 1987 - 1998 Professor (C4) and Director of the Institute at the University of Bonn, Germany 1981 - 1987 Professor (C4), Chair B for Inorganic Chemistry of the University of Hannover, Germany 1978 Habilitation at the University of Gießen, Germany 1973 Promotion (Ph.D.) at the University of Gießen, Germany 1966 - 1970 Study of Chemistry at the University of Gießen, Germany Honours and Awarded Memberships (Selection) 2019 Otto-Hahn-Prize 2009 Centenary Prize, Royal Society of Chemistry, UK 2009 Georg Wittig - Victor Grignard Prize, Société Chimique de France 2008 Member of acatech (National Academy of Science and Engineering) Nationale Akademie der Wissenschaften Leopoldina www.leopoldina.org 1 2007 Karl Ziegler Award, Germany 2004 Honorary Doctorate of the Ludwig Maximilians-University of
    [Show full text]
  • 04. Si Monsters
    IV The Chemistry of Bug-Eyed Silicon Monsters 1. The Rise and Fall of an Analogy Carbon and silicon were not always regarded as isova- lent analogs of one another. The great Swedish chem- ist, Jöns Jakob Berzelius (figure 1), who was the first to isolate silicon as a simple substance in 1823, thought that it most resembled boron (1, 2). This assignment was based on the fact that both elements formed acidic, nonvolatile oxides which could act as glass formers, and on a similarity in the appearance of the simple substances themselves, both of which had been pre- pared only as highly-impure, amorphous, nonmetallic powders. This analogy was further reinforced by errors in the determination of their atomic weights, which assigned the analogous formulas, BO3 and SiO3, to their respective oxides, in sharp contrast to the formu- las, CO and CO2, assigned to the oxides of carbon. With the gradual correction of atomic weights and the equally gradual substitution of “stoichiometric type” or valence, in place of acidity and electronegativity, as the preferred basis for chemical classification, silicon was reassigned as an analog of carbon. In 1857, the German chemist, Friedrich Wöhler (figure 2), discovered silicon tetrahydride (SiH4), the stoichiometric and structural analog of methane (CH4), and the logical starting point for speculations on an Figure 2. Friedrich Wöhler (1800-1882). alternative organic chemistry based on silicon rather than carbon (3). Ironically, however, Wöhler did not consider this possibility until 1863 and then only as a result of a faulty interpretation of his experimental data. Having obtained, via the hydrolysis of magne- sium silicide, a series of apparent compounds of sili- con, hydrogen and oxygen, he found it very difficult to assign them exact formulas.
    [Show full text]
  • On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch
    Andre Koch Torres Assis On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch Abstract The electrostatic, electrodynamic and electromagnetic systems of units utilized during last century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one another obtained the fact that an electromagnetic signal propagates at light velocity along a thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s action at a distance force. This was accomplished before the development of Maxwell’s electromagnetic theory of light and before Heaviside’s work. 1. Introduction In this work the introduction of the constant c in electromagnetism by Wilhelm Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units of charge, one of the most fundamental constants of nature. The meaning of this constant is discussed, the first measurement performed by Weber and Kohlrausch in 1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 1857. Initially the basic systems of units utilized during last century for describing electromagnetic quantities is presented, along with a short review of Weber’s electrodynamics.
    [Show full text]
  • Download Author Version (PDF)
    Dalton Transactions Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/dalton Page 1 of 11 PleaseDalton do not Transactions adjust margins Journal Name ARTICLE Boron Nitride Ceramics from Molecular Precursor: Synthesis, Properties and Applications Received 00th January 20xx, † Accepted 00th January 20xx Samuel Bernard, Chrystelle Salameh and Philippe Miele* DOI: 10.1039/x0xx00000x www.rsc.org/ Hexagonal boron nitride (h-BN) attracts considerable interest according to its structure similar to carbon graphite while it displays different properties which offer attractivity for environmental and green technologies. The polar nature of the B-N bond in sp 2-bonded BN makes it a wide band gap insulator with different chemistry on its surface and particular physical and chemical properties such as a high thermal conductivity, a high temperature stability, a high resistance to corrosion and oxidation and a strong UV emission.
    [Show full text]
  • Fritz Arndt and His Chemistry Books in the Turkish Language
    42 Bull. Hist. Chem., VOLUME 28, Number 1 (2003) FRITZ ARNDT AND HIS CHEMISTRY BOOKS IN THE TURKISH LANGUAGE Lâle Aka Burk, Smith College Fritz Georg Arndt (1885-1969) possibly is best recog- his “other great love, and Brahms unquestionably his nized for his contributions to synthetic methodology. favorite composer (5).” The Arndt-Eistert synthesis, a well-known reaction in After graduating from the Matthias-Claudius Gym- organic chemistry included in many textbooks has been nasium in Wansbek in greater Hamburg, Arndt began used over the years by numerous chemists to prepare his university education in 1903 at the University of carboxylic acids from their lower homologues (1). Per- Geneva, where he studied chemistry and French. Fol- haps less well recognized is Arndt’s pioneering work in lowing the practice at the time of attending several in- the development of resonance theory (2). Arndt also stitutions, he went from Geneva to Freiburg, where he contributed greatly to chemistry in Turkey, where he studied with Ludwig Gattermann and completed his played a leadership role in the modernization of the sci- doctoral examinations. He spent a semester in Berlin ence (3). A detailed commemorative article by W. Walter attending lectures by Emil Fischer and Walther Nernst, and B. Eistert on Arndt’s life and works was published then returned to Freiburg and worked with Johann in German in 1975 (4). Other sources in English on Howitz and received his doctorate, summa cum laude, Fritz Arndt and his contributions to chemistry, specifi- in 1908. Arndt remained for a time in Freiburg as a cally discussions of his work in Turkey, are limited.
    [Show full text]
  • Maxwell Discovers That Light Is Electromagnetic Waves in 1862
    MAXWELL DISCOVERS LIGHT IS ELECTROMAGNETIC WAVES James Clerk Maxwell was a Scottish scientist. He worked in the mid-nineteenth century in Scotland and England. At that time, electricity and magnetism had been extensively studied, and it was known since 1831 that electric current produces magnetism. Maxwell added the idea that changing magnetism could produce electricity. The term that Maxwell added to the known equations (called Ampere's law) for magnetism allowed Maxwell to see that there were wave-like solutions, that is, solutions that look like a sine wave (as a function of time). The numbers in Maxwell's equations all came from laboratory experiments on electric- ity and magnetism. There was nothing in those equations about light, and radio waves were completely unknown at the time, so the existence of electromagnetic waves was also completely unknown. But mathematics showed that Maxwell's equations had wave-like solutions. What did that mean? Maxwell proceeded to calculate the speed of those waves, which of course depended on the numbers that came from lab experiments with electricity and magnetism (not with light!). He got the answer 310,740,000 meters per second. Maxwell must have had an \aha moment" when he recognized that number. He did recognize that number: it was the speed of light! He was lecturing at King's College, London, in 1862, and there he presented his result that the speed of propagation of an electromagnetic field is approximately that of the speed of light. He considered this to be more than just a coincidence, and commented: \We can scarcely avoid the conclusion that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena." 1 2 MAXWELL DISCOVERS LIGHT IS ELECTROMAGNETIC WAVES He published his work in his 1864 paper, A dynamical theory of the electromagnetic field.
    [Show full text]
  • Max Planck Institute for the History of Science Werner Heisenberg And
    MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science PREPRINT 203 (2002) Horst Kant Werner Heisenberg and the German Uranium Project Otto Hahn and the Declarations of Mainau and Göttingen Werner Heisenberg and the German Uranium Project* Horst Kant Werner Heisenberg’s (1901-1976) involvement in the German Uranium Project is the most con- troversial aspect of his life. The controversial discussions on it go from whether Germany at all wanted to built an atomic weapon or only an energy supplying machine (the last only for civil purposes or also for military use for instance in submarines), whether the scientists wanted to support or to thwart such efforts, whether Heisenberg and the others did really understand the mechanisms of an atomic bomb or not, and so on. Examples for both extreme positions in this controversy represent the books by Thomas Powers Heisenberg’s War. The Secret History of the German Bomb,1 who builds up him to a resistance fighter, and by Paul L. Rose Heisenberg and the Nazi Atomic Bomb Project – A Study in German Culture,2 who characterizes him as a liar, fool and with respect to the bomb as a poor scientist; both books were published in the 1990s. In the first part of my paper I will sum up the main facts, known on the German Uranium Project, and in the second part I will discuss some aspects of the role of Heisenberg and other German scientists, involved in this project. Although there is already written a lot on the German Uranium Project – and the best overview up to now supplies Mark Walker with his book German National Socialism and the quest for nuclear power, which was published in * Paper presented on a conference in Moscow (November 13/14, 2001) at the Institute for the History of Science and Technology [àÌÒÚËÚÛÚ ËÒÚÓËË ÂÒÚÂÒÚ‚ÓÁ̇ÌËfl Ë ÚÂıÌËÍË ËÏ.
    [Show full text]
  • August 29 - September 03, 2021
    August 29 - September 03, 2021 www.irmmw-thz2021.org 1 PROGRAM PROGRAM MENU FUTURE AND PAST CONFERENCES························ 1 ORGANIZERS·················································· 2 COMMITTEES················································· 3 PLENARY SESSION LIST······································ 8 PRIZES & AWARDS··········································· 10 SCIENTIFIC PROGRAM·······································16 MONDAY···················································16 TUESDAY··················································· 50 WEDNESDAY·············································· 85 THURSDAY··············································· 123 FRIDAY···················································· 167 INFORMATION.. FOR PRESENTERS ORAL PRESENTERS PLENARY TALK 45 min. (40 min. presentation + 5 min. discussion) KEYNOTES COMMUNICATION 30 min. (25 min. presentation + 5 min.discussion) ORAL COMMUNICATION 15 min. (12 min. presentation + 3 min.discussion) Presenters should be present at ZOOM Meeting room 10 minutes before the start of the session and inform the Session Chair of their arrival through the chat window. Presenters test the internet, voice and video in advance. We strongly recommend the External Microphone for a better experience. Presenters will be presenting their work through “Screen share” of their slides. POSTER PRESENTERS Presenters MUST improve the poster display content through exclusive editing links (Including the Cover, PDF file, introduction.) Please do respond in prompt when questions
    [Show full text]
  • Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: a Study in German Culture
    Heisenberg and the Nazi Atomic Bomb Project http://content.cdlib.org/xtf/view?docId=ft838nb56t&chunk.id=0&doc.v... Preferred Citation: Rose, Paul Lawrence. Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: A Study in German Culture. Berkeley: University of California Press, c1998 1998. http://ark.cdlib.org/ark:/13030/ft838nb56t/ Heisenberg and the Nazi Atomic Bomb Project A Study in German Culture Paul Lawrence Rose UNIVERSITY OF CALIFORNIA PRESS Berkeley · Los Angeles · Oxford © 1998 The Regents of the University of California In affectionate memory of Brian Dalton (1924–1996), Scholar, gentleman, leader, friend And in honor of my father's 80th birthday Preferred Citation: Rose, Paul Lawrence. Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: A Study in German Culture. Berkeley: University of California Press, c1998 1998. http://ark.cdlib.org/ark:/13030/ft838nb56t/ In affectionate memory of Brian Dalton (1924–1996), Scholar, gentleman, leader, friend And in honor of my father's 80th birthday ― ix ― ACKNOWLEDGMENTS For hospitality during various phases of work on this book I am grateful to Aryeh Dvoretzky, Director of the Institute of Advanced Studies of the Hebrew University of Jerusalem, whose invitation there allowed me to begin work on the book while on sabbatical leave from James Cook University of North Queensland, Australia, in 1983; and to those colleagues whose good offices made it possible for me to resume research on the subject while a visiting professor at York University and the University of Toronto, Canada, in 1990–92. Grants from the College of the Liberal Arts and the Institute for the Arts and Humanistic Studies of The Pennsylvania State University enabled me to complete the research and writing of the book.
    [Show full text]
  • Structure and Dynamics of Disordered Ionic Materials PROGRAMME SFB 458 SPP 1136
    SFB 458 SPP 1136 Structure and Dynamics of Disordered Ionic Materials 84th International Bunsen Discussion Meeting PROGRAMME 6-8 October, 2004 Münster / Germany Organisation: SFB 458 (Chair: Prof. Dr. K. Funke) and SPP 1136 (Chair: Prof. Dr. J. Janek) Some Conference pictures SCIENTIFIC PROGRAMME WEDNESDAY, 6 OCTOBER, 2004 8:40 a.m. OPENING REMARKS 11:00 a.m. SESSION II 3:00 p.m. M. Martin K. Funke STRUCTURE AND IONIC MOTION IN RWTH Aachen / Aachen, Germany Chair SFB 458, University of Münster / INORGANIC CRYSTALLINE PHASES Oxynitrides of gallium Münster, Germany Chair: C. Cramer 3:30 p.m. A. Weidenkaff J. Janek SFB 458, University of Münster / Münster, EMPA Zürich / Zürich, Chair SPP 1136, University of Gießen / Germany Switzerland Gießen, Germany Synthesis, structure and physical 11:00 a.m. W. Depmeier properties of perovskite oxynitrides 9:00 a.m. SESSION I University of Kiel / Kiel, Germany SYNTHESIS AND CHARACTERISATION Substitutional effects in the three 4:00 p.m. M. Wuttig OF NEW INORGANIC CRYSTALLINE partial structures of sodalites RWTH Aachen / Aachen, Germany PHASES Insertion of nitrogen into oxynitrides Chair: 11:30 a.m. P. Heitjans B. Krebs University of Hannover / Hannover, 4:30 p.m. COFFEE BREAK SFB 458, University of Münster / Münster, Germany Germany Atomic motion in intercalation com- 5:00 p.m. SESSION IV pounds STRUCTURE AND DIFFUSION IN 9:00 a.m. R. Pöttgen OXYNITRIDES SFB 458, University of Münster / Münster, 12:00 noon D. Wilmer Chair: Germany SFB 458, University of Münster / Münster, R. Dieckmann Lithium transition-metal stannides Germany Cornell University / Ithaca, NY, USA Picosecond dynamics in crystalline ion 9:30 a.m.
    [Show full text]