Hindawi Shock and Vibration Volume 2018, Article ID 6179054, 18 pages https://doi.org/10.1155/2018/6179054 Research Article Virtual Simulation Analysis of Rigid-Flexible Coupling Dynamics of Shearer with Clearance Hongyue Chen,1,2 Kun Zhang ,1 Mingbo Piao,1 Xin Wang ,1 Jun Mao ,1,2 and Qiushuang Song3 1 School of Mechanical Engineering, Liaoning Technical University, No. 88, Yulong Road, Xihe District, Fuxin City, Liaoning Province 123000, China 2China National Coal Association, Dynamic Research for High-End Complete Integrated Coal Mining Equipment and Big Data Analysis Center, No. 88, Yulong Road, Xihe District, Fuxin City, Liaoning Province 123000, China 3ChinaCoalEnergyCompanyLimited(ChinaCoalEnergy),No.1,HuangsiStreet,ChaoyangDistrict,BeijingCity100120,China Correspondence should be addressed to Kun Zhang;
[email protected] Received 30 October 2017; Revised 4 February 2018; Accepted 20 February 2018; Published 4 April 2018 Academic Editor: Mario Terzo Copyright © 2018 Hongyue Chen et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A model for virtual simulation analysis of the rigid-fexible coupling of a shearer has been developed with the objective of addressing problems associated with lifetime mismatch and low reliability of pin rows of a scraper conveyor and the corresponding support mechanism of a shearer. Simulations were performed using the experimental roller load as stimulus. Results of the analysis demonstrate that the vertical cutting force on the roller serves to reduce the load on the plane support plates during shearer cutting, and the force on the right plane support plate is considerably smaller compared to that on the lef plane support plate along the direction of motion of the shearer.