Australian Tropical Rainforest Plants - Online Edition

Total Page:16

File Type:pdf, Size:1020Kb

Australian Tropical Rainforest Plants - Online Edition Australian Tropical Rainforest Plants - Online edition Family Profile Asparagaceae Family Description A family of about 153 genera and 2480 species, worldwide. Genera Asparagus - A genus of about 160 species in Europe, Africa, Asia, Malesia and Australia; one species occurs naturally in Australia and five or more species have become naturalised. Clifford & Conran (1987a,b); Malcomber & Sebsebe Demissew (1993). Cordyline - A genus of about 20 species in Asia, Malesia, Australia and New Zealand; eight species occur naturally in Australia. Pedley & Forster (1986). Eustrephus - A monotypic genus in Malesia, Australia and the Pacific islands. Conran & Clifford (1986); Laferriere, J.E. (1995). Lomandra - A genus of about 50 species in Australia, New Guinea and New Caledonia; about 50 species occur naturally in Australia. Lee & Macfarlane (1986). Pleomele - A genus of about 140 species in Asia, Malesia and the Pacific islands; one species occurs naturally in Australia. Pedley & Forster (1986). Romnalda - A genus of 4 species from Australia and New Guinea; 3 species occur naturally in Australia. Conran et al (2008) References Clifford, H.T. & Conran, J.G. (1987a). Asparagus. Flora of Australia.45: 159. Clifford, H.T. & Conran, J.G. (1987b). Protoasparagus. Flora of Australia. 45: 159-163. Conran et al (2008) Romnalda ophiopogonoides (Asparagales: Laxmanniaceae), a new and endangered species from the Wet Tropics bioregion of north-east Queensland. Telopea 12(2). Conran, J.G. & Clifford, H.T. (1986). Smilacaceae. In 'Flora of Australia.' Vol. 46, (Australian Government Publishing Service: Canberra.), pp. 180-196. Henderson, R. J. F. (1986). Flora of Australia. 46: 91-92. Lee, A.T. & Macfarlane, T.D. (1986). In 'Flora of Australia.' Vol. 46. Laferriere, J.E. (1995). Nomenclature and type specimens in Eustrephus R.Br. and Geitonoplesium Hook. (Geitonoplesiaceae). Austrobaileya 4(3):391-399. Pedley, L. & Forster, P.I. (1986). Agavaceae. Flora of Australia. 46: 71-88. S.G.A.P.(Qld Region) Logan River Branch Inc (2005) Mangroves to mountains. Volume 2. Shapcott, A., Bau, B. & Katik, P. (2008). Botanical Journal of the Linnaean Society 157: 455-474. Copyright © CSIRO 2020, all rights reserved. Web edition hosted at https://apps.lucidcentral.org/rainforest.
Recommended publications
  • Nature Conservation (Wildlife) Regulation 2006
    Queensland Nature Conservation Act 1992 Nature Conservation (Wildlife) Regulation 2006 Current as at 1 September 2017 Queensland Nature Conservation (Wildlife) Regulation 2006 Contents Page Part 1 Preliminary 1 Short title . 5 2 Commencement . 5 3 Purpose . 5 4 Definitions . 6 5 Scientific names . 6 Part 2 Classes of native wildlife and declared management intent for the wildlife Division 1 Extinct in the wild wildlife 6 Native wildlife that is extinct in the wild wildlife . 7 7 Declared management intent for extinct in the wild wildlife . 8 8 Significance of extinct in the wild wildlife to nature and its value 8 9 Proposed management intent for extinct in the wild wildlife . 8 10 Principles for the taking, keeping or use of extinct in the wild wildlife 9 Division 2 Endangered wildlife 11 Native wildlife that is endangered wildlife . 10 12 Declared management intent for endangered wildlife . 10 13 Significance of endangered wildlife to nature and its value . 10 14 Proposed management intent for endangered wildlife . 11 15 Principles for the taking, keeping or use of endangered wildlife . 12 Division 3 Vulnerable wildlife 16 Native wildlife that is vulnerable wildlife . 13 17 Declared management intent for vulnerable wildlife . 13 18 Significance of vulnerable wildlife to nature and its value . 13 19 Proposed management intent for vulnerable wildlife . 14 20 Principles for the taking, keeping or use of vulnerable wildlife . 15 Nature Conservation (Wildlife) Regulation 2006 Contents Division 4 Near threatened wildlife 26 Native wildlife that is near threatened wildlife . 16 27 Declared management intent for near threatened wildlife . 16 28 Significance of near threatened wildlife to nature and its value .
    [Show full text]
  • Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore
    Sunshine Coast Council Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore. Environmental Operations May 2013 0 | Page Table of Contents Introduction ................................................................................................................................ 2 Purpose ............................................................................................................................................... 2 Flying-fox Mitigation Strategies .......................................................................................................... 2 State and Federal Permits ................................................................................................................... 4 Roost Management Plan .................................................................................................................... 4 Risk ...................................................................................................................................................... 5 Flying-fox Dispersal Success in Australia ............................................................................................. 6 References .......................................................................................................................................... 7 Cassia Wildlife Corridor ................................................................................................................ 8 Background ........................................................................................................................................
    [Show full text]
  • Brisbane Native Plants by Suburb
    INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower
    [Show full text]
  • Chromosome Numbers in Lomandra (Dasypogonaceae)
    Telopea 2(6): 741-744 (1986) 741 CHROMOSOME NUMBERS IN LOMANDRA (DASYPOGONACEAE) BARBARA G. BRIGGS (Accepted for publication 22.3 .1985) ABSTRACT Briggs, Barbara G. (National Herbarium of New South Wales, Royal Botanic Gardens, Sydney, Australia 2000) 1986. Chromosome numbers in Lomandra (Dasypogonaceae). Telopea 2(6): 741-744 - Chromosome numbers for Sections Lomandra (13 species studied) and Typhopsis (one species) are based on x = 8, but three species of Sect. Cephalogyne have x = 7. Eight species are reported as diploid and five as tetraploid, while four show infraspecific polyploidy. The chromosome numbers of 17 species have been determined (Table 1). Several of these counts were previously reported (in Lee 1966) but without citation of voucher specimens. Preparations were of root-tips or pre-meiotic floral buds, pre-treated with saturated aqueous p-dichlorobenzene for about 2 Y4 hours, fixed in 1:3 acetic-alcohol and stained with aceta-orcein or alcoholic­ carmine. The sex of many vouchers could not be determined, since they were collected out of the flowering season. One of the counts of L. preissii (Waterhouse NSW 75454), a diploid, was cultivated for nine months in Sydney and there produced female and herma­ phrodite flowers and set fruit in isolation from other flowering plants of Lomandra. This genus is normally dioecious but hermaphrodite flowers occur sporadically in other species (A. T. Lee pers. comm.). Two base numbers are represented: x = 8 in the 13 counted species of Sect. Lomandra and x = 7 in three species of Sect. Cephalogyne, following the classi­ fication of Stevens (1978). A count of 2n = 16 has been obtained on L.
    [Show full text]
  • Supplementary Material Spatial Analysis of Limiting Resources on An
    10.1071/WR14083_AC ©CSIRO 2014 Supplementary Material: Wildlife Research 41 , 510–521 Supplementary material Spatial analysis of limiting resources on an island: diet and shelter use reveal sites of conservation importance for the Rottnest Island quokka Holly L. Poole A, Laily Mukaromah A, Halina T. Kobryn A and Patricia A. Fleming A,B ASchool of Veterinary & Life Sciences, Murdoch University, WA 6150, Australia. BCorresponding author. Email: [email protected] Table S1. Raw data of plant fragment identification for 67 faecal samples from Rottnest Island quokkas Plant Family Plants No. No. No. field group faecal fragments validation sample quadrats sites present in present in Dicot Malvaceae Guichenotia ledifolia 52 9854 75 Dicot Fabaceae Acacia rostellifera 37 3018 37 Monocot Asphodelaceae Trachyandra divaricata 46 2702 145 Dicot Myrtaceae Melaleuca lanceolata 25 1506 28 Dicot Chenopodiaceae Tecticornia 13 1350 4 halocnemoides Monocot Poaceae Stipeae (Tribe) 34 1302 171 Monocot Asphodelaceae Asphodelus fistulosus 26 1103 22 Dicot Chenopodiaceae Rhagodia baccata 13 1002 46 Dicot Chenopodiaceae Suaeda australis 12 862 2 Dicot Chenopodiaceae Threlkeldia diffusa 15 829 0 Monocot Poaceae Rostraria cristata 27 788 71 Monocot Poaceae Sporobolus virginicus 5 617 2 Dicot Chenopodiaceae Sarcocornia sp . 10 560 0 Dicot Lamiaceae Westringia dampieri 5 383 46 Dicot Goodeniaceae Scaevola crassifolia 10 349 20 Monocot Cyperaceae Gahnia trifida 8 281 6 Other Cupressaceae Callitris preissii 3 148 18 Monocot Poaceae Poa poiformis 2 116 0 Dicot Chenopodiaceae Atriplex spp. (A. 1 40 1 paludosa ) Monocot Poaceae Polypogon maritimus 1 39 0 Dicot Myrtaceae Agonis flexuosa 1 15 0 Monocot Poaceae Brachypodium distachyon 0 0 1 Monocot Asphodelaceae Bulbine semibarbata 0 0 1 Dicot Pittosporaceae Pittosporum 0 0 1 phylliraeoides Monocot Poaceae Spinifex longifolius 0 0 1 Dicot Fabaceae Acacia saligna 0 0 2 Dicot Chenopodiaceae Atriplex cinerea 0 0 2 1 Dicot Asteraceae Centaurea sp .
    [Show full text]
  • Supplementary Material Saving Rainforests in the South Pacific
    Australian Journal of Botany 65, 609–624 © CSIRO 2017 http://dx.doi.org/10.1071/BT17096_AC Supplementary material Saving rainforests in the South Pacific: challenges in ex situ conservation Karen D. SommervilleA,H, Bronwyn ClarkeB, Gunnar KeppelC,D, Craig McGillE, Zoe-Joy NewbyA, Sarah V. WyseF, Shelley A. JamesG and Catherine A. OffordA AThe Australian PlantBank, The Royal Botanic Gardens and Domain Trust, Mount Annan, NSW 2567, Australia. BThe Australian Tree Seed Centre, CSIRO, Canberra, ACT 2601, Australia. CSchool of Natural and Built Environments, University of South Australia, Adelaide, SA 5001, Australia DBiodiversity, Macroecology and Conservation Biogeography Group, Faculty of Forest Sciences, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany. EInstitute of Agriculture and Environment, Massey University, Private Bag 11 222 Palmerston North 4474, New Zealand. FRoyal Botanic Gardens, Kew, Wakehurst Place, RH17 6TN, United Kingdom. GNational Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia. HCorresponding author. Email: [email protected] Table S1 (below) comprises a list of seed producing genera occurring in rainforest in Australia and various island groups in the South Pacific, along with any available information on the seed storage behaviour of species in those genera. Note that the list of genera is not exhaustive and the absence of a genus from a particular island group simply means that no reference was found to its occurrence in rainforest habitat in the references used (i.e. the genus may still be present in rainforest or may occur in that locality in other habitats). As the definition of rainforest can vary considerably among localities, for the purpose of this paper we considered rainforests to be terrestrial forest communities, composed largely of evergreen species, with a tree canopy that is closed for either the entire year or during the wet season.
    [Show full text]
  • Plant of the Month
    Plant of the Month - May by Allan Carr Geitonoplesium cymosum scrambling lily Pronunciation: guy-ton-o-PLEEZ-ee-um sy-MOW-sum HEMEROCALLIDACEAE Derivation: Geitonoplesium, from the Greek, geiton – a neighbour and plesio – near (because of its close affinity to the genus, Luzuriaga in which it was originally placed); cymosum, from the Greek, kyma – to swell, grow (presumably referring to the way in which a *cyme of flowers spreads outwards from the centre). Leaves, buds Buds, flower with native bee Leaves with raised mid vein Geitonoplesium is a monotypic genus (contains this single species) found in eastern Australia as well as Pacific Islands and Malaysia. Description: G. cymosum is a wiry twining climber often scrambling over itself. It is usually found in shaded positions and has fibrous roots and edible new growth. In eastern Australia it is found from north Qld down through eastern NSW to Vic. Leaves to 110 mm x 25 mm are alternate, shiny dark green above, paler below and have a distinct raised mid vein above several parallel longitudinal veins. Their shape can vary from *ovate to *lanceolate. Flowers to 15 mm across are borne in drooping *cymes of several white flowers with 6 petals and yellow *stamens from February to July. Fruits are black globular berries to 20 mm diameter with numerous waxy black seeds. This plant is very similar to Eustrephus latifolius (Plant of the Month - April) but can be easily identified by its leaves with an obvious raised mid vein, non-fringed flower petals or the black fruits. *ovate = shaped like an egg in outline, broadest near the base *lanceolate = shaped like a lance, about four times as long as it is wide and tapering to a point *cyme = a rounded arrangement of flowers where the flowers open from the centre first and spread outwards *stamen = one of the male organs of a flower consisting of a stalk (filament) and a pollen-bearer (anther) Habit with fruits .
    [Show full text]
  • Wetland Plants of the Townsville − Burdekin
    WETLAND PLANTS OF THE TOWNSVILLE − BURDEKIN Dr Greg Calvert & Laurence Liessmann (RPS Group, Townsville) For Lower Burdekin Landcare Association Incorporated (LBLCA) Working in the local community to achieve sustainable land use THIS PUBLICATION WAS MADE POSSIBLE THROUGH THE SUPPORT OF: Burdekin Shire Council Calvert, Greg Liessmann, Laurence Wetland Plants of the Townsville–Burdekin Flood Plain ISBN 978-0-9925807-0-4 First published 2014 by Lower Burdekin Landcare Association Incorporated (LBLCA) PO Box 1280, Ayr, Qld, 4807 Graphic Design by Megan MacKinnon (Clever Tangent) Printed by Lotsa Printing, Townsville © Lower Burdekin Landcare Association Inc. Copyright protects this publication. Except for purposes permitted under the Copyright Act, reproduction by whatever means is prohibited without prior permission of LBLCA All photographs copyright Greg Calvert Please reference as: Calvert G., Liessmann L. (2014) Wetland Plants of the Townsville–Burdekin Flood Plain. Lower Burdekin Landcare Association Inc., Ayr. The Queensland Wetlands Program supports projects and activities that result in long-term benefits to the sustainable management, wise use and protection of wetlands in Queensland. The tools developed by the Program help wetlands landholders, managers and decision makers in government and industry. The Queensland Wetlands Program is currently funded by the Queensland Government. Disclaimer: This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The authors and funding bodies hold no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy.
    [Show full text]
  • Phylogeny, Genome Size, and Chromosome Evolution of Asparagales J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 24 2006 Phylogeny, Genome Size, and Chromosome Evolution of Asparagales J. Chris Pires University of Wisconsin-Madison; University of Missouri Ivan J. Maureira University of Wisconsin-Madison Thomas J. Givnish University of Wisconsin-Madison Kenneth J. Systma University of Wisconsin-Madison Ole Seberg University of Copenhagen; Natural History Musem of Denmark See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Pires, J. Chris; Maureira, Ivan J.; Givnish, Thomas J.; Systma, Kenneth J.; Seberg, Ole; Peterson, Gitte; Davis, Jerrold I.; Stevenson, Dennis W.; Rudall, Paula J.; Fay, Michael F.; and Chase, Mark W. (2006) "Phylogeny, Genome Size, and Chromosome Evolution of Asparagales," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 24. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/24 Phylogeny, Genome Size, and Chromosome Evolution of Asparagales Authors J. Chris Pires, Ivan J. Maureira, Thomas J. Givnish, Kenneth J. Systma, Ole Seberg, Gitte Peterson, Jerrold I. Davis, Dennis W. Stevenson, Paula J. Rudall, Michael F. Fay, and Mark W. Chase This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol22/iss1/ 24 Asparagales ~£~2COTSgy and Evolution Excluding Poales Aliso 22, pp. 287-304 © 2006, Rancho Santa Ana Botanic Garden PHYLOGENY, GENOME SIZE, AND CHROMOSOME EVOLUTION OF ASPARAGALES 1 7 8 1 3 9 J. CHRIS PIRES, • • IVAN J. MAUREIRA, THOMAS J. GIVNISH, 2 KENNETH J. SYTSMA, 2 OLE SEBERG, · 9 4 6 GITTE PETERSEN, 3· JERROLD I DAVIS, DENNIS W.
    [Show full text]
  • Your Local Native Plant Nursery
    Your Local Native Plant Nursery Grow List for Forest Heart Groundcovers Groundcovers cont... Acaena nova-zelandiae Biddy biddy Plumbago zeylandica Native plumbago Artanema fimbriatum Koala bells Pollia crispata Pollia Austrocynoglossum latifolium Forest Hounds tooth Pollia macrophylla Pollia Austromyrtus dulcis Midyim Rostellularia obtusa pink tongue Austromyrtus glabra Midyim Rubus moluccanus Molucca raspberry Brachyscome spp. Daisy Rubus rosifolius Rose leaved raspberry Calotis cuneifolia Burr Daisy Scaevola albida Fan flower Corchorus cunninghamii Native jute Stackhousia spathulata Beach Stackhousia Chrysocephalum apiculatum Yellow buttons Viola banksii Native violet Cullen tenax Emu foot grass Xerochrysum bracteatum Yellow paper daisy Dichondra repens Kidney weed Ferns Enchylaena tomentosa Ruby salt bush Adiantum aethiopicum Common Maidenhair Goodenia arenicola Goodenia Goodenia ovata Goodenia - prostrate form Adiantum formosum Black-stemmed maidenhair Goodenia paniculata Goodenia Adiantum hispidulum Rough maidenhair fern Goodenia rotundifolia Goodenia Asplenium australasicum Birds nest fern Hibbertia aspera Rough guinea flower Blechnum cartilagineum Gristle fern Hibbertia dentata Guinea flower Blechnum indicum Bungwall Hibbertia vestita Rough guinea flower Cyathea cooperi Straw tree fern Isotoma axillaris Australian harebells Doodia aspera Rasp fern Leiocarpa brevicompta Common Sunray Todea barbara King fern Lobelia membranacea Lobelia Lobelia trigonocaulis Forest lobelia Lillies Mazus pumilio Mazus Crinum pedunculata River lily
    [Show full text]
  • Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene Ndhf Thomas J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 4 2006 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Thomas J. Givnish University of Wisconsin-Madison J. Chris Pires University of Wisconsin-Madison; University of Missouri Sean W. Graham University of British Columbia Marc A. McPherson University of Alberta; Duke University Linda M. Prince Rancho Santa Ana Botanic Gardens See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Givnish, Thomas J.; Pires, J. Chris; Graham, Sean W.; McPherson, Marc A.; Prince, Linda M.; Patterson, Thomas B.; Rai, Hardeep S.; Roalson, Eric H.; Evans, Timothy M.; Hahn, William J.; Millam, Kendra C.; Meerow, Alan W.; Molvray, Mia; Kores, Paul J.; O'Brien, Heath W.; Hall, Jocelyn C.; Kress, W. John; and Sytsma, Kenneth J. (2006) "Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/4 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Authors Thomas J. Givnish, J. Chris Pires, Sean W. Graham, Marc A. McPherson, Linda M. Prince, Thomas B. Patterson, Hardeep S. Rai, Eric H. Roalson, Timothy M. Evans, William J. Hahn, Kendra C. Millam, Alan W. Meerow, Mia Molvray, Paul J. Kores, Heath W. O'Brien, Jocelyn C. Hall, W. John Kress, and Kenneth J. Sytsma This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol22/iss1/ 4 Aliso 22, pp.
    [Show full text]
  • Farming and Protecting the Critically Endangered Iron-Grass Natural
    October 2011 FARMING AND PROTECTING THE CRITICALLY ENDANGERED IRON-GRASS NATURAL TEMPERATE GRASSLAND Since European settlement, most of the Iron-grass Natural Temperate Grassland of South Australia has been cleared, or degraded by pasture improvement and, in some circumstances, grazing. The small amount of natural temperate grassland of this type remaining in good condition is now protected under Australia’s national environment law—the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). What does national protection of Iron-grass Natural Temperate Grassland mean for farmers/ graziers? National environment law protects Australia’s unique plants and animals without stopping farm business. In many cases, your supportive farming practices have helped retain remnant native grasslands. You may need Australian Government approval if: • the protected iron-grass grassland (or other protected matters) occur on your property, and • a new, intensified or changed activity could have a significant impact on the ecological community. If you are not sure whether your activity requires Australian Government approval, you can get free advice from the environment liaison officer at the National Farmers’ Federation on 1800 704 520 (or email [email protected]). What and where is Iron-grass Natural Temperate Grassland? Iron-grass Natural Temperate Grassland mainly occurs on the slopes and hills of the Mount Lofty Ranges, west of the River Murray and throughout the mid north. Patches also occur on the eastern side of the River Murray near Tailem Bend, and may occur along the Hummocks Range north of the Gulf Saint Vincent. environment.gov.au This indicative map shows the outer boundary of the area in which the ecological community may occur.
    [Show full text]