The Synthesis of Benzophenone-3,5-Diacid Chloride for the Double Capping of Beta-Cyclodextrin

Total Page:16

File Type:pdf, Size:1020Kb

The Synthesis of Benzophenone-3,5-Diacid Chloride for the Double Capping of Beta-Cyclodextrin W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1997 The Synthesis of Benzophenone-3,5-Diacid Chloride for the Double Capping of beta-Cyclodextrin Clyde Wesley Eargle College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Organic Chemistry Commons Recommended Citation Eargle, Clyde Wesley, "The Synthesis of Benzophenone-3,5-Diacid Chloride for the Double Capping of beta- Cyclodextrin" (1997). Dissertations, Theses, and Masters Projects. Paper 1539626104. https://dx.doi.org/doi:10.21220/s2-en0f-nh60 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Synthesis of Benzophenone-3,5-Diacid Chloride for the Double Capping of p-Cyclodextrin A Thesis Presented to The Faculty of the Chemistry Department The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Arts by C. Wesley Eargle 1997 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Approved, April 1997 Gary W. Rice, Ph.D. Robert J. Hinkle, Ph.D. ii DEDICATION This project would have never come as far as it has without the guidance and support of many people, far too many to list on a single page. The author would like to single out three individuals who have, in one way or another, pushed me towards this final goal. This thesis is dedicated to the memory of my brother, Charles Parham Eargle, jr., who never got to appreciate the good times that should have been. This thesis is also dedicated to the memory of my grandfather, Clyde Woodward Rutland, for providing the example that I should hope to follow for the rest of my life. This thesis is also dedicated in honor of my best friend, J.P. Northrop, whose constant support and encouragement allowed me to get through the tough times. Without these people in my life, this thesis would have never come to fruition. TABLE OF CONTENTS DEDICATION................................................................................ iii ACKNOWLEDGEMENTS.......................................................... v LIST OF TABLES.......................... vi LIST OF FIGURES............................................................................ vii ABSTRACT .............................................................................................................ix INTRODUCTION.....................................................................................................................2 BACKGROUND......................... .:.................................................... 6 * * CyClodextrins .................................................................................................................6 Inclusion Complexes .................. 9 Capping..................... 12 Photochemistry. ........................ 17 Previous Synthetic Pathways ......................... ............. ............ ................................ 21 MATERIALS AND METHODS....... ............................................................................ 24 1 -Bromo-3,5-dimethylbenzene............................................................ ......................26 N,N-Diethylbenzamide ..............................................................................................27 3.5-Dimethylbenzophenone (Lithiation Pathway) ...................................................28 3.5-Dimethylbenzophenone (Grignard Pathway) ....................................................29 Benzophenone-3,5-dicarboxylic acid ...................................... ................................. 30 Benzophenone-3,5-dicarboxylic acid chloride .................................. 30 6A, 6B, 6A, 6B -(Benzophenone-3,5-diacid)2-/?-cyclodextrin ................. .................. 31 RESULTS AND DISCUSSION........................................................................................... 32 CONCLUSION ............................................................................................................42 APPENDICES........................ ...............................................................................................43 Appendix I: !H and 13C NMR Spectra ......................................................................43 Appendix II: Internet NMR Predictions .................... ..............................................53 Appendix HI: PC Model Bali and Stick Structures ................. ............................... 63 REFERENCES....................................................................................................................... 65 VITA 67 ACKNOWLEDGMENTS The author wishes to express his appreciation to Professor Christopher J. Abelt for his patient guidance and encouragement throughout the investigation and in the preparation of this thesis. The writer also indebted to Professors Gary W. Rice and Robert J. Hinkle for their help in critiquing and offering suggestions for this manuscript, and to Professors W. Gary Hollis and Jonathan Touster for their inspiration and tireless patience during my undergraduate studies. v LIST OF TABLES Table Page 1. Molecular Modeling Data for Benzopinacol Capped /?-cyclodextrin ..................40 vi LIST OF FIGURES Figure Page 1. Structures of a and y -cyclodextrins..... ................ ......................................6 2. Dimensions of a - , j]-, and y -cyclodextrins ............ 7 3. Faces of Cyclodextrins .......................... 8 4. Hydrophobic Effect .............................................................................................................11 5. Breslow’s “Flexible Cap” ........................................................................................13 6. First True Cyclodextrin Cap ............................................................................................... 14 7. Loopers Walk vs Oligomerization. .................................................................................... 14 8. AB, AC and AD Caps on /?-Cyclodextrin. ....................... 15 9. Tabushi’s Regiospecific AB, AC and AD Caps ............................................. 16 10. Benzopinacol Formation ................... 19 11. Three Major Pinacol Products .................................................................................. 20 12. High Intensity Radiation Induced Radical-Radical Reactions ...................................... 21 13. Proposed Acetylisophthalic Acid Synthesis ....................................................... 22 14. Synthesis of 5-Cyano-l,3-Isophthalic Acid ............... 22 15. Synthesis of Benzophenone-3,5-Dicarboxylic Acid ...................................................... 23 16. Synthesis of l-Bromo-3,5-Dimethylbenzophenone ................... 33 17. Synthesis of N,N-Diethylbenzamide ................................................................................33 18. Synthesis of 3,5-Dimethylbenzophenone (Lithiation Pathway) .................................... 34 19. Synthesis of 3,5-Dimethylbenzophenone (Grignard Pathway) ..................................... 35 20. Mechanism for the Oxidation of Methyl Groups to the Corresponding Acids ............36 21. Synthesis of Benzophenone-3,5-Diacid Chloride ...........................................................38 22. ’H NMR Spectrum of l-Bromo-3,5-dimethylbenzene ...................................... 43 23. 13C NMR Spectrum of l-Bromo-3,5-dimethylbenzene ................... 44 24. 'H-NMR Spectrum of N,N-Diethylbenzamide ........................ 45 25. 13C NMR Spectrum of N,N-Diethylbenzamide ..............................................................46 26. ‘H NMR Spectrum of 3,5-Dimethylbenzophenone (Lithiation Pathway) ............... ....47 27. ‘H NMR Spectrum of 3,5-Dimethylbenzophenone (Grignard Pathway) ..................... 48 28.13C NMR Spectrum of 3,5-Dimethylbenzophenone (Grignard Pathway) .................... 49 29. 'HNMR Spectrum of Benzophenone-3,5-dicarboxylic acid .........................................50 30. 13C NMR Spectrum of Benzophenone-3,5-dicarboxylic acid ............................. ...51 31. ‘H NMR Spectrum of Benzophenone-3,5-dicarboxylic acid chloride ..........................52 32. Predicted 'H NMR Spectrum of l-Bromo-3,5-dimethylbenzene .................................. 53 33. Predicted ,3C NMR Spectrum ofl-Bromo-3,5-dimethylbenzene .................................. 54 34. Predicted !H NMR Spectrum of N,N-Diethylbenzamide ...............................................55 35. Predicted 13C NMR Spectrum ofN,N-Diethylbenzamide ............................................. .56 36. Predicted *H NMR Spectrum of 3,5-Dimethylbenzophenone..!.... ................................ 57 37. Predicted 13C NMR Spectrum of 3,5-Dimethylbenzophenone .......................................58 38. Predicted’H NMR Spectrum of Benzophenone-3,5-dicarboxylic acid... .....................59 39. Predicted 13C NMR Spectrum of Benzophenone-3,5-dicarboxylic acid.. .................... 60 40. Predicted *H NMR Spectrum of Benzophenone-3,5-dicarboxylic acid chloride 61 vii Figure Page 41. Predicted 13C NMR Spectrum of Benzophenone-3,5-dicarboxylic acid chloride 62 42. Ball and Stick Structure of ABCD3 — Side View .........................................................63
Recommended publications
  • Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides
    Proceedings of the Iowa Academy of Science Volume 61 Annual Issue Article 26 1954 Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides B. R. Bluestein Coe College Albert Hybl Coe College Yoshimi Al Nishioka Coe College Let us know how access to this document benefits ouy Copyright ©1954 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Bluestein, B. R.; Hybl, Albert; and Nishioka, Yoshimi Al (1954) "Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides," Proceedings of the Iowa Academy of Science, 61(1), 225-232. Available at: https://scholarworks.uni.edu/pias/vol61/iss1/26 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Bluestein et al.: Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlor Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides By B. R. BLUESTEIN, ALBERT HYBL* AND YosHIMI AL NISHIOKA INTRODUCTION The reaction kinetics of the alcoholysis of substituted benzoyl chlorides was studied. The mechanism of the alcoholysis reaction, which is most generally accepted ( 1), shows that the overall re­ action should be second-order and that the reaction should be first-order with respect to the acid chloride and first-order with respect to the alcohol. This rate study was carried out using a large excess of alcohol as the solvent, thus obtaining pseudo-first order rate constants, first-order with respect to the acid chloride only.
    [Show full text]
  • Surface Modifications of Poly(Ether Ether Ketone) Via Polymerization
    materials Review Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods—Current Status and Future Prospects Monika Flejszar and Paweł Chmielarz * Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powsta´nców Warszawy 6, 35-959 Rzeszów, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-17-865-1809 Received: 24 January 2020; Accepted: 20 February 2020; Published: 23 February 2020 Abstract: Surface modification of poly(ether ether ketone) (PEEK) aimed at applying it as a bone implant material aroused the unflagging interest of the research community. In view of the development of implantology and the growing demand for new biomaterials, increasing biocompatibility and improving osseointegration are becoming the primary goals of PEEK surface modifications. The main aim of this review is to summarize the use of polymerization methods and various monomers applied for surface modification of PEEK to increase its bioactivity, which is a critical factor for successful applications of biomedical materials. In addition, the future directions of PEEK surface modifications are suggested, pointing to low-ppm surface-initiated atom transfer radical polymerization (SI-ATRP) as a method with unexplored capacity for flat surface modifications. Keywords: PEEK; surface modification; polymer brushes; ultraviolet (UV)-initiated graft polymerization; SI-ATRP 1. Introduction Currently, the production of bone implants is limited only to metal materials (stainless steel, cobalt–chromium, titanium). However, in the production of personalized bone implants, there is an alternative synthetic polymer named poly(ether ether ketone) (PEEK) [1–3]. The chemical structure of PEEK can be defined as an alternating combination of aryl rings through ketone and ether groups; therefore, it belongs to the family of polyaryletherketone polymers.
    [Show full text]
  • Grignard Reaction: Synthesis of Triphenylmethanol
    *NOTE: Grignard reactions are very moisture sensitive, so all the glassware in the reaction (excluding the work-up) should be dried in an oven with a temperature of > 100oC overnight. The following items require oven drying. They should be placed in a 150mL beaker, all labeled with a permanent marker. 1. 5mL conical vial (AKA: Distillation receiver). 2. Magnetic spin vane. 3. Claisen head. 4. Three Pasteur pipettes. 5. Two 1-dram vials (Caps EXCLUDED). 6. One 2-dram vial (Caps EXCLUDED). 7. Glass stirring rod 8. Adaptor (19/22.14/20) Grignard Reaction: Synthesis of Triphenylmethanol Pre-Lab: In the “equations” section, besides the main equations, also: 1) draw the equation for the production of the byproduct, Biphenyl. 2) what other byproduct might occur in the reaction? Why? In the “observation” section, draw data tables in the corresponding places, each with 2 columns -- one for “prediction” (by answering the following questions) and one for actual drops or observation. 1) How many drops of bromobenzene should you add? 2) How many drops of ether will you add to flask 2? 3) 100 µL is approximately how many drops? 4) What are the four signs of a chemical reaction? (Think back to Chem. 110) 5) How do the signs of a chemical reaction apply to this lab? The Grignard reaction is a useful synthetic procedure for forming new carbon- carbon bonds. This organometallic chemical reaction involves alkyl- or aryl-magnesium halides, known as Grignard 1 reagents. Grignard reagents are formed via the action of an alkyl or aryl halide on magnesium metal.
    [Show full text]
  • 13C NMR Study of Co-Contamination of Clays with Carbon Tetrachloride
    Environ. Sci. Technol. 1998, 32, 350-357 13 sometimes make it the equal of solid acids like zeolites or C NMR Study of Co-Contamination silica-aluminas. Benesi (7-9) measured the Hammett acidity of Clays with Carbon Tetrachloride function H0 for a number of clays; these H0 values range from +1.5 to -8.2 (in comparison to H0 )-12 for 100% ) and Benzene sulfuric acid and H0 5 for pure acetic acid). Therefore, one can expect that certain chemical transformations might occur in/on clays that are similar to what are observed in zeolite TING TAO AND GARY E. MACIEL* systems. Thus, it is of interest to examine what happens Department of Chemistry, Colorado State University, when carbon tetrachloride and benzene are ªco-contami- Fort Collins, Colorado 80523 nantsº in a clay. This kind of information would be useful in a long-term view for understanding chemical transforma- tions of contaminants in soil at contaminated sites. Data on 13 these phenomena could also be useful for designing predic- Both solid-sample and liquid-sample C NMR experiments tive models and/or effective pollution remediation strategies. have been carried out to identify the species produced by Solid-state NMR results, based on 13C detection and line the reaction between carbon tetrachloride and benzene narrowing by magic angle spinning (MAS) and high-power when adsorbed on clays, kaolinite, and montmorillonite. Liquid- 1H decoupling (10), have been reported on a variety of organic sample 13C and 1H NMR spectra of perdeuteriobenzene soil components such as humic samples (11-13). Appar- extracts confirm the identities determined by solid-sample ently, there have been few NMR studies concerned directly 13C NMR and provide quantitative measures of the amounts with elucidating the interactions of organic compounds with of the products identifiedsbenzoic acid, benzophenone, and soil or its major components.
    [Show full text]
  • United States Patent Office 3,321,512 Patiented May 23, 1967 2 3,321,512 Peroxide Can Be Prepared in Any Convenient Manner
    United States Patent Office 3,321,512 Patiented May 23, 1967 2 3,321,512 peroxide can be prepared in any convenient manner. It MANUFACTURE OF PERBENZOIC ACDS is preferred, however, to produce the suspension by dis David James Cooper and Tony Nicholas Gibson, both of tributing the corresponding benzoyl chloride in finely di Whitley Bay, Northumberiand, England, assignors to vided form in an aqueous alkaline solution of hydrogen Thecorporation Procter of & OhioGamble Company, Cincinnati, Cilio, a peroxide having a pH of not less than 10. The benzoyl No Drawing. Fified Jan. 22, 1964, Ser. No. 339,323 chloride reacts with the hydrogen peroxide solution pro Ciains priority, application (Great Britaia, Jan. 31, 1963, ducing the benzoyl peroxide which is obtained in the form 4,012/63 of a fine suspension. This can be achieved by introducing 2. Ciaisas. (C. 260-502) the benzoyl chloride at the periphery of a high speed agi IO tator (for example, an agitator of at least 2 inches in This invention relates to an improved process for the diameter rotating at 1500 to 2000 rp.m.) which is located manufacture of perbenzoic acids. in the solution. Alternatively, the benzoyl chloride can The conventional method of preparing aromatic percar be introduced into the throat of a Venturi mixer through boxylic acids is a two stage process in which the diacyl which the aqueous alkaline solution is passing. peroxide is prepared by reacting the aromatic acyl chlo 15 As stated above, the alkaline solution of hydrogen per ride (e.g., benzoyl chloride) with alkaline hydrogen per oxide must have a pH of at least 10.
    [Show full text]
  • On the Limits of Benzophenone As Cross-Linker for Surface-Attached Polymer Hydrogels
    polymers Article On the Limits of Benzophenone as Cross-Linker for Surface-Attached Polymer Hydrogels Esther K. Riga †, Julia S. Saar †, Roman Erath, Michelle Hechenbichler and Karen Lienkamp * ID Freiburg Center für Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany; [email protected] (E.K.R.); [email protected] (J.S.S.) * Correspondence: [email protected]; Tel.: +49-761-203-95090 † These authors contributed equally to this work. Received: 17 November 2017; Accepted: 4 December 2017; Published: 7 December 2017 Abstract: The synthesis of different photo-reactive poly(alkenyl norbornenes) and poly(oxonorbornenes) containing benzophenone (BP) via ring-opening metatheses polymerization (ROMP) is described. These polymers are UV irradiated to form well-defined surface-attached polymer networks and hydrogels. The relative propensity of the polymers to cross-link is evaluated by studying their gel content and its dependency on BP content, irradiation wavelength (254 or 365 nm) and energy dose applied (up to 11 J·cm−2). Analysis of the UV spectra of the polymer networks demonstrates that the poly(oxonorbornenes) show the expected BP-induced crosslinking behavior at 365 nm, although high irradiation energy doses and BP content are needed. However, these polymers undergo chain scission at 254 nm. The poly(alkenyl norbornenes), on the other hand, do not cross-link at 365 nm, whereas moderate to good cross-linking is observed at 254 nm. UV spectra demonstrate that the cross-linking at 254 nm is due to BP cross-linking combined with a [2 + 2] cylcoaddition of the alkenyl double bonds.
    [Show full text]
  • Benzoyl Peroxide
    BENZOYL PEROXIDE Prepared at the 63rd JECFA (2004), published in FNP 52 Add 12 (2004) superseding specifications prepared at the 55th JECFA (2000) and published in FNP 52 Add 8 (2000). Treatment of whey with benzoyl peroxide at a maximum concentration of 100 mg/kg does not pose a safety concern (63rd JECFA, 2004). SYNONYMS Benzoyl superoxide, INS No. 928 DEFINITION Benzoyl peroxide is manufactured by the reaction of benzoyl chloride, sodium hydroxide and hydrogen peroxide. Chemical name Dibenzoyl peroxide C.A.S. number 94-36-0 Chemical formula C14H10O4 Structural formula Formula weight 242.23 Assay Not less than 96.0% DESCRIPTION Colourless, crystalline solid having a faint odour of benzaldehyde. Caution: Benzoyl peroxide, especially in the dry form, is a dangerous, highly reactive, oxidizing material and has been known to explode spontaneously FUNCTIONAL USES Bleaching agent CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Insoluble in water, slightly soluble in ethanol and soluble in ether. Melting range (Vol. 4) 103 - 106° with decomposition Decomposition to benzoic To 0.5 g of the sample add 50 ml of 0.5 N ethanolic potassium hydroxide, heat acid gradually to boiling and continue boiling for 15 min. Cool and dilute with 200 ml of water. Add sufficient 0.5 N hydrochloric acid to make strongly acidic and extract with ether. Dry the ether solution over anhydrous sodium sulfate, and then evaporate to dryness on a steam bath. The benzoic acid so obtained melts between 121° and 123°. PURITY Lead (Vol. 4) Not more than 2 mg/kg Determine using an atomic absorption technique appropriate to the specified level.
    [Show full text]
  • Friedel and Crafts' Reaction-The Preparation of Orthobenzoyl-Benzoic Acid and Benzophenone
    732 C. R. RUBIDGE AND N. C. QUA. two and five-tenths grams of cyanimidocaxbonic ethyl ester, prepared from bromocyanogen, potassium cyanide, and alcohol1 were added to the suspended alcoholate. Heat was developed, the solution became yellow, and sodium cyanide was precipitated. The reaction mixture was heated for two hours in a flask connected with a reflux condenser, and enough water was added to dissolve the sodium cyanide. After the water solution had been extracted with ether several times, the ether was dried with calcium chloride. Thus, 32 g. of a light yellow oil, possessing a strong basic odor, were obtained when the ether was evaporated. Even at a pressure of 25 mm. the compound could not be distilled without consid- erable decomposition. Therefore, no analysis of the substance was at- tempted. Its identity was established by converting it into the corre- sponding oximido derivative. Preqaration of Oximidocarbonic Ethyl Isoamyl Ester, CZHS@-C~C~HII,- II NOH Eight and four-tenths grams of hydroxylamine, dissolved in a small amount of water, were added to 20 g. of the imido ester dissolved'in 20 cc. of ether. The mixture was shaken thirty minutes, the water layer was drawn off, extracted several times with ether, and the ether dried with sodium sulfate. Twenty grams of a reddish yellow oil were obtained when the ether evaporated. When cooled to -15', white crystals ap- peared which melted when they were spread out on a cold clay plate. 0.1754 g. gave 12.8 cc. Nz at 24.5' and 742 mm. Calc. for CsH1703N: N, 7.99.
    [Show full text]
  • Ether Ether Ketone): Monitoring the Meta-Fluorine Displacement in 3,5,4’- Trifluorobenzophenone
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2017 Toward The Synthesis of Functionalized Poly (Ether Ether Ketone): Monitoring the meta-Fluorine Displacement in 3,5,4’- trifluorobenzophenone Giovanni Covarrubias Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Chemistry Commons Repository Citation Covarrubias, Giovanni, "Toward The Synthesis of Functionalized Poly (Ether Ether Ketone): Monitoring the meta-Fluorine Displacement in 3,5,4’-trifluorobenzophenone" (2017). Browse all Theses and Dissertations. 1725. https://corescholar.libraries.wright.edu/etd_all/1725 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. TOWARD THE SYNTHESIS OF FUNCTIONALIZED, SEMI-CRYSTALLINE POLY (ETHER ETHER KETONE): MONITORING THE META-FLUORINE DISPLACEMENT IN 3,5,4’-TRIFLUOROBENZOPHENONE A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By: GIOVANNI COVARRUBIAS B.S. Loras College, 2013 2017 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL May 18th, 2017 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Giovanni Covarrubias ENTITLED Toward The Synthesis of Functionalized Poly (Ether Ether Ketone)s: Monitoring the meta-Fluorine Displacement in 3,5,4’-trifluorobenzophenone BE ACCEPTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. ____________________________ Eric Fossum, Ph. D. Thesis Advisor ____________________________ David Grossie, Ph. D. Chair, Department of Chemistry Committee on Final Examination _____________________________ Eric Fossum, Ph.
    [Show full text]
  • Material Safety Data Sheet HCS Risk Phrases HCS CLASS: Corrosive Liquid
    Material Safety Data Sheet HCS Risk Phrases HCS CLASS: Corrosive liquid. HCS CLASS: Combustible liquid IIIA having a flash point between 60.0°C (140°F) and 93.3°C (200°F) Section I. Chemical Product and Company Identification Common Name/ Benzoyl Chloride In Case of Trade Name Emergency In the continental U.S.A. call CHEMTREC 800-424-9300 (24 hours) Outside the continental U.S.A. call CHEMTREC 703-527-3887 (24 hours) Supplier Velsicol Chemical Corporation Manufacturer Velsicol Chemical Corporation 10400 W. Higgins Road 10400 W. Higgins Road Rosemont, IL 60018 U.S.A. Rosemont, IL 60018 U.S.A. Phone: 847-298-9000 Phone: 847-298-9000 Fax: 847-298-9015 Fax: 847-298-9015 Synonym Benzenecarbonyl Chloride Material Uses Agricultural Industry: Chloramber Chemical Name Benzoyl Chloride (herbicide). Intermediate for pesticides. Chemical Family Acyl Halide Industrial Applications: Acylation. Chemical C7 H5 CL 0 Polymerization initiator of benzophenone. Formula Intermediate for stabilizers. Acetic anhydride production. Textile Industry: Cellulosic yarn treatment agent. Fastness improver. Other Non-Specified Industry: Organic analysis. Dyes. Perfumes. Section II. Composition and Information on Ingredients Name CAS# % by Weight TLV/PEL OSHA Hazardous Ingredients 1) Benzoyl Chloride 98-88-4 >99.5 STEL: 2.8 (mg/m3) from Yes ACGIH (TLV) 2) Benzotrichloride 98-07-7 <0.02 STEL: 0.1 ppm from Yes ACGIH; Skin designation. 3) Benzyl Alcohol 100-44-7 <0.01 TWA: 1 (ppm) from Yes ACGIH (TLV) Section III. Hazards Identification Emergency Overview Clear. Liquid. Pungent. Acrid odor. DANGER! CAUSES SEVERE EYE, SKIN AND RESPIRATORY TRACT BURNS. MAY CAUSE BLINDNESS.
    [Show full text]
  • Bringing Order to Organic Chemistry
    Radicals and Types: Bringing Order to Organic Chemistry Organic Chemistry can now make you completely mad. It seems like a primeval forest in a tropical country where we hate to venture, full of the most peculiar things, an enormous thicket with no end and no way out. Friedrich Wöhler to Jakob Berzelius, January 28, 1835 Monday, October 4, 2010 Transformation of Organic Chemistry, 1820-1850 Reasons for this transformation: • Recognition of isomerism. • Explanation of isomerism by “arrangement.” • The rapid adoption of Berzelian notation as “paper tools” • Justus Liebig’s invention of the Kaliapparat for organic analysis Monday, October 4, 2010 Justus von Liebig (1803-1873) Friedrich Wöhler (1800-1882) Monday, October 4, 2010 Compounds with Identical Molecular Formulas • Liebig: Silver fulminate: 77.53% AgO, 22.47% cyanic acid • Wöhler: Silver cyanate: 77.23% AgO, 22.77% cyanic acid • Wöhler, 1828: • Cyanic acid + ammonia –––> ammonium cyanate –––> urea • Berzelius: • Isomers: compounds with different properties, but identical elemental composition. Monday, October 4, 2010 Liebig, Wöhler and the Oil of Bitter Almonds (1834) • C14H12O2 + oxidant --> C14H12O4 (benzoic acid) • C14H12O2 + chlorine --> C14H12O2Cl2 • C14H12O2 + bromine --> C14H12O2Br2 • (Many other reactions with iodine, ammonia, etc.) • Benzoyl Hydrogen: C14H10O2 • H2 • Benzoyl chloride: C14H10O2 • Cl2 • Benzoyl iodide: C14H10O2 • I2 • Benzoic acid: C14H10O2 • OH2 • Constant set of atoms: C14H12O2 Benzoyl radical Monday, October 4, 2010 Liebig, Wöhler and the Oil of Bitter Almonds (1834) Role of Berzelian formulas in creating the concept of the benzoyl radical • Elemental analysis results must be converted into integral numbers of “atoms” (C14H10O2 • H2 for oil of bitter almonds) • Formulas represent the benzoyl radical, but are also the means of “discovering” it, by manipulating symbols on paper.
    [Show full text]
  • Paper Crystal Engineering, Solid State Spectroscopy and Time-Resolved
    Crystal engineering, solid state spectroscopy and time-resolved diffraction{ Philip Coppens,* Baoqing Ma, Oxana Gerlits, Yuegang Zhang and Pankaj Kulshrestha Paper Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, Highlight USA. E-mail: [email protected] Received 12th April 2002, Accepted 29th April 2002 Published on the Web 17th July 2002 The use of calixarene-based supramolecular solids in spectroscopy and time-resolved crystallography is discussed. A series of solids with, as guests, benzophenone, benzil, decamethylruthenocene and a binuclear Rh cationic complex have been synthesized and analyzed. The excited state lifetimes that have been measured show a pronounced dependence on the molecular environment. 1 Introduction also includes the characteristics of the guest molecules embedded in the solids. The supramolecular frameworks that One of the prime attractions of the field of crystal engineering is the possibility to tailor-make solids with desirable physical or {Based on the presentation given at CrystEngComm Discussion, 29th chemical properties. This is not limited to bulk properties but June–1st July 2002, Bristol, UK. Philip Coppens received his Ph.D. from the University interest is in time-resolved photocrystallographic temperature superconductors. He then obtained his of Amsterdam and has since been employed at the studies and supramolecular chemistry. He has over Ph.D. under the supervision of Professor Philip Weizmann Institute of Science, Brookhaven National 50 scientific publications. Coppens at the State University of New York at Laboratory and the State University of New York at Buffalo in 2001, working on engineering crystals for Buffalo, where he is currently Distinguished Professor excited state X-ray diffraction studies.
    [Show full text]