Modulation of Voltage-Gated K Channels by the Sodium Channel Β1
Modulation of voltage-gated K+ channels by the sodium channel β1 subunit Hai M. Nguyena, Haruko Miyazakib, Naoto Hoshic, Brian J. Smithd, Nobuyuki Nukinab, Alan L. Goldine, and K. George Chandya,1 Departments of aPhysiology and Biophysics, cPharmacology, and eMicrobiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697; bLaboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan; and dLa Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia Edited* by Michael D. Cahalan, University of California, Irvine, CA, and approved September 26, 2012 (received for review June 1, 2012) β – Voltage-gated sodium (NaV) and potassium (KV) channels are critical Here, we examined whether the NaV 1 KV4.x interaction was components of neuronal action potential generation and propaga- specific for this family of KV channels, or whether NaVβ1 could β SCN1b tion. Here, we report that NaV 1 encoded by , an integral interact and modulate the functions of other families of KV chan- subunit of NaV channels, coassembles with and modulates the bio- nels in mammals. We selected three families of KV channels (KV1, physical properties of KV1andKV7 channels, but not KV3 channels, in KV3, and KV7) for these studies. We report that NaVβ1modulates fi β an isoform-speci c manner. Distinct domains of NaV 1 are involved the function of KV1.1, KV1.2, KV1.3, KV1.6, and KV7.2 channels, in modulation of the different KV channels. Studies with channel but not KV3.1 channels, in an isoform-specific manner. Through chimeras demonstrate that NaVβ1-mediated changes in activation the use of chimeric and mutational strategies we identified regions kinetics and voltage dependence of activation require interaction in NaVβ1 and KV channels required for channel modulation, and of NaVβ1 with the channel’s voltage-sensing domain, whereas docking simulations suggest a molecular model of the interaction of changes in inactivation and deactivation require interaction with the two proteins.
[Show full text]