Redalyc.Antoine Alexandre Brutus Bussy
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Unit – 1 Introduction - Chloro Alkali Industries-Scha 1305
SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF CHEMICAL ENGINEERING UNIT – 1 INTRODUCTION - CHLORO ALKALI INDUSTRIES-SCHA 1305 1 Process Equipment Symbols UnitOperation SchematicRepresentation Comments 1. Distillation Utilized for intermittent operation and handling small volumes (a) Batch of feed and product (b) ContinuosFra Suitable for high volume ctionator continuous separation of complex mixtures eg. petroleum fraction Employed for large capacity 2. Drying ofSolids operation on liquid feed to give powered, spherical,free (a) SprayDrier flowing product ;used in prodution of pigments, detergents,synthetic resins and misc inorganic salts 2 UnitOperation SchematicRepresentation Comments Suitable for drying free flowing granular solids which do not dust or stick ; high temp models are kilns (b) RotaryDrier for calcining cement, lime, etc. Best suited to drying pastes or powders in trays ; also used ( c ) Tunnel Driver to dry pottery, lumber, leather, etc., In sheet shaped forms 3. Evaporation Used for small batches ; often of viscous mat’s ; (a) OpenPan such designs are easy to clean 3 UnitOperation SchematicRepresentation Comments Used to contact solvent and feed 4. Extraction to give raffinate and extract ; widely adapted to removal of (a) Liquid -liquid napthenes from lube oil fractions Using solvents such as furfural Involves removal of a solute from a Solidbymeansofaliquidso;lventOften ( b) Solid-Liquid used in ore treatment to Recover (Leaching) metal values 5. FluidHandling ( a )Centrifugal Mostwidelyusedforliquidsofall pump types;simpleinconstructionand maintenance 4 UnitOperation SchematicRepresentation Comments (b) Reciprocating Pump Generally used for higher Or Compressor pressure delivery ; may be used for metering or proportioning Used for lower pressure ( c ) Jet Ejector operation or production of vacuum ; steam often used as motive fluid 6. -
SULFUR TRIOXIDE -- Chemical Fact Sheet
OLEUM/SULFUR TRIOXIDE -- Chemical Fact Sheet 1 What is it? Oleum is a cloudy, gray, fuming, oily, corrosive liquid with a sharp, penetrating odor. When Oleum comes into contact with air following a spill, it releases Sulfur Trioxide. Sulfur Trioxide is a white gas having the appearance of fog. It also has a sharp, penetrating odor that is detectable at low concentrations. Because of the tendency to liberate Sulfur Trioxide on contact with air, Oleum is also known as “fuming Sulfuric Acid”. Where does it Oleum is made by dissolving Sulfur Trioxide into Sulfuric Acid. Sulfur come from? Trioxide is made from Sulfur Dioxide in the presence of a catalyst. What are the It is used in the oil refining process to make crude oil distillates into higher quality materials. common uses for it? Manufacture of soap Manufacture of high purity Sulfuric Acid for the electronic industry Manufacture of catalyst used in production of Sulfuric Acid. How is it Oleum is shipped by truck and pipeline. transported in CCC? How is it stored Oleum is stored in covered tanks. in CCC? Health Hazards from Exposure Exposure Route Symptoms First Aid Inhalation Irritates nose, throat and Remove to fresh air. Seek (low concentrations) lungs medical attention if Burning Sensation symptoms persist. Sneezing, coughing Inhalation Burning sensation Remove to fresh air, get (high concentrations & prolonged exposure) Coughing, gagging medical attention including Chest tightness and pain, oxygen administration. Fluid in lungs Initiate CPR if breathing has Suffocation, death stopped. Eyes Severely irritates eyes Rinse eyes with water for at Burning/discomfort least 5 minutes. -
Source Test Method ST-20 SULFUR DIOXIDE, SULFUR TRIOXIDE
Source Test Method ST-20 SULFUR DIOXIDE, SULFUR TRIOXIDE, SULFURIC ACID MIST (Adopted January 20, 1982) REF: Regulations 6-320, 6-330, 9-1-302, 9-1-304 thru 310, 10-1-301, 12-6-301 1. APPLICABILITY 1.1 This method is used to quantify emissions of s ulfur dioxide, sulfur trioxide and sulfuric acid mist. It determines compliance with Regulations 6-320 and 6-330 for SULFUR TRIOXIDE and SULFURIC ACID MIST, and 9-1-302, 9- 1-304 thru 310 and 10-1-301 and 12-6-301 for SULFUR DIOXIDE. 1.2 This method, modified with a glass fiber disc filter as the back-up SO 3 filter, has been given alternate status by the EPA to EPA Method 8. It may be used to determine compliance with oxides of sulfur regulations under Regulation 9. 2. PRINCIPLE 2.1 Sulfuric acid mist, sulfur trioxide and sulfur dioxide are collected in a single extractive sampling train. Acid mist is trapped in a quartz wool plug in the sample probe and is subsequently analyzed with an acid-base titration. Sulfur trioxide is absorbed in an 80% isopropyl alcohol (IPA)/water solution with a quartz wool back-up filter and is analyzed using analytical procedure Lab-12. Sulfur dioxide is absorbed in an aqueous hydrogen peroxide solution and is analyzed using analytical procedure Lab-12. 3. RANGE 3.1 The minimum measurable concentration using this method listed below are: 3 3.1.1 Acid mist - 0.0002 gr/ft as H2SO4 3.1.2 Sulfur trioxide - 7 ppm 3.1.3 Sulfur dioxide - 7 ppm 3.2 The maximum measurable concentrations using this method listed below are: 3.2.1 Acid mist - undetermined 3.2.2 Sulfur trioxide - 350 ppm 3.2.3 Sulfur dioxide - 2.5 % 4. -
Vol 10 No 09 Corrosion from High Ammonia in An
™ The CONTACTOR Published Monthly by Optimized Gas Treating, Inc. Volume 10, Issue 9, September, 2016 Severe Corrosion in the Incinerator of an SRU The case study that is the subject of this 푁푎2푆푂4 + 퐻2푂 + 푁푂 + 푁푂2 + 푂2 month’s issue of The Contactor™ arose from stack or by hydrolysis of nitrosylsulfuric acid: tests on an SRU. High SO2 levels were found to- gether with a high concentration of acid mist. Acid 2푁푂퐻푆푂4 + 퐻2푂 → 2퐻2푆푂4 + 푁푂 + 푁푂2 mist seemed to be related to the operation of the In the incinerator of an SRU, combusting ammonia sour water stripper (SWS) but in a way whose also produces NO components because the main chemistry was not understood. However, ammonia x fuel is actually hydrocarbon. For example, it has was suspected to be a contributor. † been reported in a very interesting paper that the Most of the ammonia produced in a refinery degree of conversion of ammonia to NOx is a is collected in sour water. Sometimes it can be strong function of excess air, ammonia content in prevented from entering the SRU from the SWS by the hydrocarbon fuel, and the degree of mixing in employing a two-stage stripping process which the flame. So the chemical species necessary for produces concentrated streams of H2S and NH3. generating sulfuric acid by the chemistry of the lead ProTreat is an excellent tool for accurate design chamber process are present because (1) there is and simulation of two-stage SWSs. Either this always SO2, and (2) ammonia enters the incinera- ammonia stream can be further concentrated into a tor either directly from a 2-stage SWS, or from in- marketable anhydrous form, or it can be directly complete destruction of NH3 in the reaction furnace incinerated. -
PROCESS MODELING and ANALYSIS of CO2 PURIFICATION for OXY-COAL COMBUSTION MASSACHUSETTS INS E by of TECHNOLOGY
PROCESS MODELING AND ANALYSIS OF CO2 PURIFICATION FOR OXY-COAL COMBUSTION MASSACHUSETTS INS E By OF TECHNOLOGY Chukwunwike Ogbonnia Iloeje MAY 18 2011 B.Eng. Mechanical Engineering LIBRRIES University of Nigeria, Nsukka, 2004 SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN AR(MES PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JANUARY 2011 0 2011 Massachusetts Institute of Technology. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author........... ............................... Department of Mechanical Engineering January 14, 2011 Certified by.............. Ahmed F. Ghoniem Ronald C. Crane Professor Thacic Cunanwicnr Accepted by.................................. .... ................. Dave E.Hardt Chairman, Department Committee on Graduate Students *r PROCESS MODELING AND ANALYSIS OF CO2 PURIFICATION FOR OXY-COAL COMBUSTION By Chukwunwike Ogbonnia Iloeje Submitted to the Department of Mechanical Engineering on January 14, 2011 in Partial Fulfillment of the Requirements for the degree of Master of Science in Mechanical Engineering ABSTRACT Oxy-coal combustion technology has great potential as one of the major CO2 capture technologies for power generation from coal. The distinguishing feature of oxy-coal combustion is that the oxygen source is a high concentration oxygen stream and the product flue gas consists primarily of CO2 and H20 with contaminants like NOx, SOx, and non-condensable gases like argon, oxygen and nitrogen. For carbon sequestration and Enhanced Oil Recovery (EOR) applications, pipeline transport standards as well as storage specifications impose concentration limits on these contaminants. -
(VI) and Chromium (V) Oxide Fluorides
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1976 The chemistry of chromium (VI) and chromium (V) oxide fluorides Patrick Jay Green Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Green, Patrick Jay, "The chemistry of chromium (VI) and chromium (V) oxide fluorides" (1976). Dissertations and Theses. Paper 4039. https://doi.org/10.15760/etd.5923 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. All ABSTRACT OF THE TllESIS OF Patrick Jay Green for the Master of Science in Chemistry presented April 16, 1976. Title: Chemistry of Chromium(VI) and Chromium(V) Oxide Fluorides. APPROVEO BY MEMBERS OF THE THESIS CO'"o\l TIEE: y . • Ii . ' I : • • • • • New preparative routes to chromyl fluoride were sought. It was found that chlorine ironofluoride reacts with chromium trioxide and chromyl chlo ride to produce chromyl fluoride. Attempts were ~ade to define a mechan ism for the reaction of ClF and Cr0 in light of by-products observed 3 and previous investigations. Carbonyl fluoride and chromium trioxide react to fom chro·yl fluoride and carbo:i dioxide. A mechanism was also proposed for this react10n. Chromium trioxide 11itl\ l~F6 or WF5 reacts to produce chromyl fluoride and the respective oxide tetrafluoride. 2 Sulfur hexafluoride did not react with Cr03. -
Oxidation of Sulfur Dioxide to Sulfur Trioxide Over Supported Vanadia Catalysts
Applied Catalysis B: Environmental 19 (1998) 103±117 Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts Joseph P. Dunn, Prashanth R. Koppula, Harvey G. Stenger, Israel E. Wachs* Zettlemoyer Center for Surface Studies, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015, USA Accepted 2 June 1998 Abstract The objectives of this research are to establish the fundamental kinetics and mechanism of sulfur dioxide oxidation over supported vanadia catalysts and use these insights to facilitate the design of SCR DeNOx catalysts with minimal sulfur dioxide oxidation activity. A series of supported vanadia catalysts were prepared on various metal-oxide supports: ceria, zirconia, titania, alumina and silica. Raman spectroscopy was used to determine the coordination of surface species. At low vanadia 5 loadings, vanadia preferentially exists on oxide support surfaces as isolated tetrahedrally coordinated (M±O)3V O species. 5 At higher vanadia loadings, the isolated (M±O)3V O species polymerize on the oxide support surface breaking two V±O±M bonds and forming two V±O±V bridging bonds. The turnover frequency for sulfur dioxide oxidation was very low, 104 to 106 s1 at 4008C, and was independent of vanadia coverage suggesting that only one vanadia site is required for the oxidation reaction. As the support was varied, sulfur dioxide oxidation activity of the supported vanadia catalysts varied by one order of magnitude (Ce>Zr, Ti>Al>Si). The basicity of the bridging V±O±M oxygen appears to be responsible for in¯uencing the adsorption and subsequent oxidation of the acidic sulfur dioxide molecule. Over the range of conditions studied, the rate of sulfur dioxide oxidation is zero-order in oxygen, ®rst-order in sulfur dioxide and inhibited by sulfur trioxide. -
The Chemical Industry 3. Industrial Production of NH3, HNO3, H2SO4
The Chemical Industry 3. Industrial production of NH3, HNO3, H2SO4 1 Ammonia production https://www.youtube.com/watch?v=wiwl4eoHbig&t=8s ◦ Ammonia is one of the most highly produced inorganic chemicals. There are numerous large-scale ammonia production plants worldwide, producing a total of 144 million tonnes of nitrogen (equivalent to 175 million tonnes of ammonia) in 2016. ◦ China produced 31.9% of the worldwide production, followed by Russia with 8.7%, India with 7.5%, and the United States with 7.1%. ◦ 80% or more of the ammonia produced is used for fertilizing agricultural crops. ◦ Ammonia is also used for the production of plastics, fibers, explosives, nitric acid (via the Ostwald process) and intermediates for dyes and pharmaceuticals. 2 Modern ammonia-producing plants ◦ A typical modern ammonia-producing plant first converts natural gas, liquified petroleum gas, or petroleum naphtha into gaseous hydrogen. ◦ The method for producing hydrogen from hydrocarbons is known as steam reforming. ◦ The hydrogen is then combined with nitrogen to produce ammonia via the Haber-Bosch process. https://www.youtube.com/watch?v=pzFZ9TYizaw 3 Starting with a natural gas feedstock, the processes used in producing the hydrogen are: The first step in the process is to remove sulfur compounds from the feedstock because sulfur deactivates the catalysts used in subsequent steps. Sulfur removal requires catalytic hydrogenation to convert sulfur compounds in the feedstocks to gaseous hydrogen sulfide: H2 + RSH → RH + H2S(gas) The gaseous hydrogen sulfide -
Utilization of Sulfur Dioxide in Organic Acids Recovery and Sulfur Trioxide Conversion with Iron Oxide As Catalyst Yonghui Shi Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2006 Utilization of sulfur dioxide in organic acids recovery and sulfur trioxide conversion with iron oxide as catalyst Yonghui Shi Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Civil Engineering Commons, and the Environmental Engineering Commons Recommended Citation Shi, Yonghui, "Utilization of sulfur dioxide in organic acids recovery and sulfur trioxide conversion with iron oxide as catalyst " (2006). Retrospective Theses and Dissertations. 1486. https://lib.dr.iastate.edu/rtd/1486 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Utilization of sulfur dioxide in organic acids recovery and sulfur trioxide conversion with iron oxide as catalyst by Yonghui Shi A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Civil Engineering (Environmental Engineering) Program of Study Committee: J. Hans van Leeuwen (Co-major Professor) Robert C. Brown (Co-major Professor) Shihwu Sung (Co-major Professor) Thomas D. Wheelock Roy Gu Iowa State University Ames, Iowa 2006 UMI Number: 3223019 UMI Microform 3223019 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. -
Liquid Sulfur Trioxide Bulk Chemicals and Intermediates | Technical Data Sheet
Liquid Sulfur trioxide Bulk Chemicals and Intermediates | Technical Data Sheet Synonyms Sulfuric anhydride O O S O Molecular formula O3S Molecular weight 80.0 CAS number 7446-11-9 EINECS number 231-197-3 Specifications Appearance Clear, colourless fuming liquid Free sulfur trioxide 99.2% minimum Physical properties Boiling point 45°C Melting point 16.8°C Specific gravity 1.92 Vapour density 2.8 (air-1) Description Sulfur trioxide is a clear, colourless fuming liquid with a strong odour. It reacts violently with water. Applications Intermediate for chemicals Packaging Sulfur trioxide is available in bulk tankers. Other packaging may be considered on request. Storage and handling Store in a tightly closed container. Keep in a cool, dry and well-ventilated area. Sulfur trioxide is moisture-sensitive. Keep away from heat, any sources of ignition, direct sunlight or strong incandescent light. Do not breathe gas | fumes | vapours | spray. Never add water to this product. Avoid shock and friction. In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, get immediate medical advice. Avoid contact with skin and eyes. Keep away from incompatible materials such as oxidising agents, metals, alkalis and moisture. Always refer to the Safety Data Sheet (SDS) for detailed information on storage and handling. Safety Wear personal protective equipment (PPE) such as safety glasses or chemical goggles, full-body suit, vapour respirator, safety shoes and gloves. A self-contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient, consult a specialist before handling this product. Always refer to the SDS for detailed information on safety. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
An Investigation of the Reaction Between Sulphur Dioxide And
An Investigation of the Reaction i > ci>:' Between Sulfur Dioxide and Oxygen in a Fluidised Catalyst Bed By Robert W. Bell »■ and Howard W. Strauss A THESIS Submitted in partial fulfillment of the requirements for degrees of BASTER OF SCIENCE Department of Chemical Engineering The Rice Institute August^ 19h9 ;-v. v', ACKB0M3GEMKJ Tiie authors wish to express their appreciation to all those who have aided in this investigation# In particular* they wish to thank the follot/ing: Dr. G* T. McBride, Jr., for his continued interest and advice* Professor A. J. Hartsook for the opportunity of carrying out this investigation. The Pan American Refining Corporation and Dr. R. H. Eric© for the financial assistance which made this work possible* Dr. John T. Smith and the Shell Oil Company for a spectrographic analysis 13 TABLE OF CONTENTS Page I. SUMMARY i II. INTRODUCTION g A. Purpose of Investigation g B. Theory of Heterogeneous Reactions g 1. Effects of Mass Transfer g 2. Adsorption of a Reactant Rate Controlling g 3* Desorption of a Product Rate Controlling 7 L» Surface Reaction Rate Controlling f $m Effects of Temperature 8 C. Work of Other Investigators 8 III. APPARATUS AHD PROCEDURE ■ * 13 A. Apparatus £3 B« Materials jg G. Procedure 16 1. Catalyst Preparation 15 2* Run Technique • 18 3* Analyses 19 a. Sulfur Dioxide 19 b. Oxygen 19 c* Sulfur Trioxide ■ 20 IV. EXPERIMENTAL RESULTS 21 A. Preliminary Data 21 B. Investigation Proper 20 V. INTERPRETATION OP DATA 43 lli i! flags A. Differential Rate Equations Developed for the Theory 48 V of Activated Adsorption.