Sedimented Chemosynthetic Ecosystems of the Southern Ocean

Total Page:16

File Type:pdf, Size:1020Kb

Sedimented Chemosynthetic Ecosystems of the Southern Ocean Sedimented Chemosynthetic Ecosystems of the Southern Ocean James Benjamin Bell Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Faculty of Earth and Environment School of Geography April 2017 i The candidate confirms that the work submitted is his own, except where work which has formed part of jointly authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapter 3 of the thesis has appeared in publication as follows: Geochemistry, faunal composition and trophic structure in reducing sediments on the southwest South Georgia margin. Royal Society Open Science (2016) 3; 160284. James B. Bell, Alfred Aquilina, Clare Woulds, Adrian G. Glover, Crispin T. S. Little, William D. K. Reid, Laura E. Hepburn, Jason Newton & Rachel A. Mills Contributions: JBB was responsible for the literature review; geochemical, taxonomic and isotopic analyses; statistical methods; preparation of plots and figures and for preparing all drafts of the manuscript. AA, CW, AGG, WDKR, LEH and RAM were responsible for collection of samples at sea. Additional geochemical data were collected and analysed by AA, LEH and RAM. JBB was assisted in taxonomic analyses by AGG and CTSL and in elemental and isotopic analyses by CTSL, CW and JN. All authors commented on various draft manuscripts and approved the final version. This manuscript was reviewed by Prof. David Pond (Scottish Association for Marine Science) and Prof. Lisa Levin (Scripps Institute of Oceanography). The work in Chapter 4 of the thesis has appeared in publication as follows: Macrofaunal ecology of sedimented hydrothermal vents in the Bransfield Strait, Antarctica. Frontiers in Marine Science (2016) 3: 32. 10.3389/fmars.2016.00032. James B. Bell, Clare Woulds, Lee E. Brown, Christopher J. Sweeting, William D. K. Reid, Crispin T. S. Little, and Adrian G. Glover Contributions: JBB was responsible for the literature review; taxonomic data collection; taxonomic and geochemical data analyses; preparation of figures and all drafts of the manuscript. AGG, CW, WDKR and CJS were responsible for ii collection of samples at sea. JBB was assisted in taxonomic analyses by CTSL and AGG and in statistical analyses by CW and LEB. All authors commented on various draft manuscripts and approved the final version. This manuscript was reviewed by Dr Americo Montiel (University of Magallanes, Chile) and Dr Daniella Zeppilli (French Research Institute for Exploitation of the Sea). The work in Chapter 5 of the thesis under review at the time of submitting this thesis, following an invitation from the Associate Editor to submit a revised version. Manuscript first submitted on the 27th of July 2016. Associate Editor decision 7th December 2016. Revised manuscript submitted 20th December 2016. Hydrothermal activity lowers trophic diversity in Antarctic sedimented hydrothermal vents. Biogeosciences (In review) James B. Bell, William D. K. Reid, David A. Pearce, Adrian G. Glover, Christopher J. Sweeting, Jason Newton, & Clare Woulds Contributions: JBB was responsible for the literature review; preparation of isotope samples; analysis of isotopic data; statistical methods; preparation of figures and all drafts of the manuscript. WDKR, DAP, AGG, CJS and CW were responsible for collection of samples at sea. DAP was responsible for 16S sequencing and interpretation of sediment microbial assemblages. JBB was assisted in isotopic data collection by JN and isotopic data analyses by WDKR and CW. All authors commented on various draft manuscripts and approved the final version. The work presented in Chapter 6 of the thesis was under initial review at the time of submitting this thesis. Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling. Scientific Reports (In review) James B. Bell, Clare Woulds & Dick van Oevelen. Contributions: JBB was responsible for the literature review; collation of data; designing and implementing model code; statistical methods; preparation of iii figures and all drafts of the manuscript. JBB was assisted in model design; implementation and statistical methods by DvO and in data collation by DvO and CW. All authors commented on various draft manuscripts and approved the final version. Thesis by Alternative Format (TAF) Rationale As a consequence of the samples having being collected prior to the commencement of the studentship, primary data collection began shortly following the studentship start date. The student was then able to begin preparing manuscripts within one year of starting and the first article submission was accepted in February 2016 (Chapter 4). Subsequent submissions of the second and third data chapters were made in 2016, with chapter 3 accepted in August 2016 and chapter 5 resubmitted in December 2016, following initial reviews. Chapter 6 was in review at the time of submission. This meant that TAF was considered to be the most appropriate option for the thesis and the data chapters are organised with respect to submitted versions of each of the publications (either accepted or in review). Copies (PDFs) of each of the published manuscripts accompany this thesis as well as each having gold open access at their respective journals. Supplementary material is included as appendices on the attached CD. The student has also contributed to several other publications during the studentship, but only publications lead authored by the student that are relevant to this project are given in the thesis below. Copyright Declaration This copy has been supplied on the understanding that it is copyright material and that no quotation from this thesis may be published without proper acknowledgement. The right of James Benjamin Bell to be identified as the author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. iv 2016 James B. Bell, The Natural History Museum and The University of Leeds Acknowledgements I am enormously grateful to several people, whose support has been invaluable to me during the last three and a half years. My supervisors; Clare Woulds, Adrian Glover and Lee Brown have supported me throughout my academic development and I have particularly appreciated the repeated opportunities for self-direction and professional development. I have found the project very fulfilling and certainly hope that this won’t be the last contribution I make to marine science. Further to my two main supervisors, I’d also like to thank the numerous other people whom I’ve been fortunate enough to work with during the course of my PhD: Will Reid; Cris Little; Jason Newton; Karen Bacon; Laura Hepburn; Alfred Aquilina and Rachel Mills. Thanks also to the generous support of my examiners, Andrew Sweetman and Graeme Swindles. In particular, I’d also like to accord special thanks to Dan Jones and Claudia Alt, whose tireless support at the start of my academic career gave me the chance to get started on all this science business. I would also like to gratefully acknowledge the funding support I have received from NERC and the Natural History Museum. I would also like to thank my lovely wife, Becci, and my two wonderful daughters, Sophie and Emma for reminding me about the other important things in life, and forcing me to have a work-life balance from time to time. Thank you also to my parents, Nick and Alison, who have helped give me the opportunities to be able to have reached this stage. Even more thanks (in no particular order) to the great friends who’ve helped me on my way: Jess; Alice; Will; Joe; Owen; Scott; Liz; Sarah (F and L); Freddie; Greta; Fernanda; Adriane; Michelle and Annie. The completion of this thesis represents a major step in my life’s ambition to study the biological wonders of the deep ocean. From the age of six, I had already resolved to become a marine biologist and I am proud to able to say that I have accomplished that and incredibly appreciative of those mentioned above who have helped make it happen. v I have published papers and given talks on deep-sea biology, completed a PhD thesis in deep-sea biology, participated in a deep-sea research cruise and even done stand-up comedy about deep-sea biology. I am a deep-sea biologist. *High fives six-year old self* vi Abstract Sedimented chemosynthetic ecosystems (SCEs) are complex seafloor environments that combine several potential sources of organic matter. Their physical similarity to the vast soft-sediment habitats on the seafloor means that they can be inhabited by a diverse range of more ubiquitous fauna. This is in stark contrast to ecosystems such as hard substratum hydrothermal vents, which are typically almost totally dominated by a few specialist species. Another characteristic of these ecosystems is that they exhibit diffuse environmental gradients, relating to chemosynthetic production potential and environmental toxicity. Consequently, it is often difficult to determine their spatial extent, and the ecological responses along such gradients. A central theme of the research presented in this thesis has been to determine the role of habitat-structuring processes at two contrasting SCEs in the Atlantic sector of the Southern Ocean. I demonstrate that these environments elicit significant changes in assemblage structure, trophodynamics and carbon cycles. Chemosynthetic activity generally did not constitute a major proportion of the diet of any assemblage, even at the most hydrothermally active sites, but was detected in macrofaunal food webs at very surprising distances (~ 100km) from the (known) sites of active venting. This research illustrates and examines the impacts that these environments can have upon a range of ecological processes and raises questions about the full extent and significance of chemosynthetic organic matter production in seafloor ecosystems.
Recommended publications
  • Translation 3204
    4 of 6 I' rÉ:1°.r - - - Ï''.ec.n::::,- - — TRANSLATION 3204 and Van, else--- de ,-0,- SERIES NO(S) ^4p €'`°°'°^^`m`^' TRANSLATION 3204 5 of 6 serceaesoe^nee SERIES NO.(S) serv,- i°- I' ann., Canada ° '° TRANSLATION 3204 6 of 6 SERIES NO(S) • =,-""r I FISHERIES AND MARINE SERVICE ARCHIVE:3 Translation Series No. 3204 Multidisciplinary investigations of the continental slope in the Gulf of Alaska area by Z.A. Filatova (ed.) Original title: Kompleksnyye issledovaniya materikovogo sklona v raione Zaliva Alyaska From: Trudy Instituta okeanologii im. P.P. ShirshoV (Publications of the P.P. Shirshov Oceanpgraphy Institute), 91 : 1-260, 1973 Translated by the Translation Bureau(HGC) Multilingual Services Division Department of the Secretary of State of Canada Department of the Environment Fisheries and Marine Service Pacific Biological Station Nanaimo, B.C. 1974 ; 494 pages typescriPt "DEPARTMENT OF THE SECRETARY OF STATE SECRÉTARIAT D'ÉTAT TRANSLATION BUREAU BUREAU DES TRADUCTIONS MULTILINGUAL SERVICES DIVISION DES SERVICES DIVISION MULTILINGUES ceÔ 'TRANSLATED FROM - TRADUCTION DE INTO - EN Russian English Ain HOR - AUTEUR Z. A. Filatova (ed.) ri TL E IN ENGLISH - TITRE ANGLAIS Multidisciplinary investigations of the continental slope in the Gulf of Aâaska ares TI TLE IN FORE I GN LANGuAGE (TRANS LI TERA TE FOREIGN CHARACTERS) TITRE EN LANGUE ÉTRANGÈRE (TRANSCRIRE EN CARACTÈRES ROMAINS) Kompleksnyye issledovaniya materikovogo sklona v raione Zaliva Alyaska. REFERENCE IN FOREI GN LANGUAGE (NAME: OF BOOK OR PUBLICATION) IN FULL. TRANSLI TERATE FOREIGN CHARACTERS, RÉFÉRENCE EN LANGUE ÉTRANGÈRE (NOM DU LIVRE OU PUBLICATION), AU COMPLET, TRANSCRIRE EN CARACTÈRES ROMAINS. Trudy Instituta okeanologii im. P.P.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]
  • IFM-GEOMAR Report No. 50
    RV SONNE Fahrtbericht / Cruise Report SO239 EcoResponse Assessing the Ecology, Connectivity and Resilience of Polymetallic Nodule Field Systems Balboa (Panama) – Manzanillo (Mexico) 11.03. -30.04.2015 GEOMAR REPORT Berichte aus dem GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel Nr. 25 (N. Ser.) November 2015 RV SONNE Fahrtbericht / Cruise Report SO239 EcoResponse Assessing the Ecology, Connectivity and Resilience of Polymetallic Nodule Field Systems Balboa (Panama) – Manzanillo (Mexico) 11.03. -30.04.2015 Berichte aus dem GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel Nr. 25 (N. Ser.) ISSN Nr.: 2193-8113 Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel The GEOMAR Helmholtz Centre for Ocean Research Kiel ist Mitglied der Helmholtz-Gemeinschaft is a member of the Helmholtz Association of Deutscher Forschungszentren e.V. German Research Centres Herausgeber / Editor: Prof. Dr. Pedro Martínez Arbizu and Matthias Haeckel GEOMAR Report ISSN N..r 2193-8113, DOI 10.3289/GEOMAR_REP_NS_25_2015 Helmholtz-Zentrum für Ozeanforschung Kiel / Helmholtz Centre for Ocean Research Kiel GEOMAR Dienstgebäude Westufer / West Shore Building Düsternbrooker Weg 20 D-24105 Kiel Germany Helmholtz-Zentrum für Ozeanforschung Kiel / Helmholtz Centre for Ocean Research Kiel GEOMAR Dienstgebäude Ostufer / East Shore Building Wischhofstr. 1-3 D-24148 Kiel Germany Tel.: +49 431 600-0 Fax: +49 431 600-2805 www.geomar.de RV SONNE SO239 Cruise Report / Fahrtbericht Balboa (Panama) – Manzanillo (Mexico) 11th March 2015 – 30th April 2015 SO239 EcoResponse Assessing the Ecology, Connectivity and Resilience of Polymetallic Nodule field Systems Chief scientist: Prof. Dr. Pedro Martínez Arbizu, Senckenberg am Meer, Deutsches Zentrum für Marine Biodiversitätsforschung, Wilhelmshaven 1 TOC / Inhaltsverzeichnis Inhalt 1. Cruise summary / Zusammenfassung .................................................................................... 4 1.1 German / Deutsch ............................................................................................................
    [Show full text]
  • (Crustacea: Malacostraca)?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Marine Archive vol. 33, no. 2, pp. 139–162, 2012 doi: 10.2478/v10183−012−0012−5 Are there widespread peracarid species in the deep sea (Crustacea: Malacostraca)? Angelika BRANDT1*, Magdalena BŁAŻEWICZ−PASZKOWYCZ2, Roger N. BAMBER3, Ute MÜHLENHARDT−SIEGEL1,4, Marina V. MALYUTINA5, Stefanie KAISER1, Claude De BROYER6 and Charlotte HAVERMANS6 1Biocentre Grindel and Zoological Museum Hamburg, Martin−Luther−King−Platz 3, 20146 Hamburg, Germany 2Zakład Biologii Polarnej i Oceanobiologii, Uniwersytet Łódzki, ul. Banacha 12/16, 90−237 Łódź, Poland 3ARTOO Marine Biology Consultants LLP,Ocean Quay Marina, Belvidere Road, Southampton SO14 5QY, UK 4Forschungsinstitut Senckenberg, DZMB, Südstrand 44, 26382 Wilhelmshaven, Germany 5A.V. Zhirmunsky Institute of Marine Biology, FEB RAS, Palchevskogo 17, 690059, Vladivostok, Russia 6Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Bruxelles, Belgium * corresponding author <[email protected]−hamburg.de> Abstract: The global zoogeographic distribution of the most widespread peracarid species occurring in three or more ocean basins below 2000 m is analysed. Basing on the published data we investigated 45 peracarid species, which have a most widespread distribution and most likely are cosmopolitan. Thirty−three species have a wide distribution in the Northern Hemisphere. Most species occur in the North Atlantic, however, 16 of these species occur also in the North Pacific, a more limited number of species occurs in the South Atlantic or South Pacific The Southern Ocean displays some special zoogeographic features and 22 widespread species occur there below 2000 m, including highly eurybathic ones.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Supplement to the 2002 Catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004
    Museum Victoria Science Reports 7: 1–15 (2005) ISSN 1833-0290 https://doi.org/10.24199/j.mvsr.2005.07 Supplement to the 2002 catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004 GARY C. B. POORE Museum Victoria, GPO Box 666E, Melbourne, Victoria 3001, Australia ([email protected]) Abstract Poore, G.C.B. 2005. Supplement to the 2002 catalogue of Australian Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004. Museum Victoria Science Reports 7: 1–15. Publications in the period 2002 to 2004 dealing with Australian Syncarida and Peracarida have been reviewed and new taxa, new combinations and significant papers listed. Eighty species in 28 genera and seven families of Isopoda, seven new species in four genera and two families of Tanaidacea, and one new species of Spelaeogriphacea have been newly reported for Australia in the 3-year period. No publications dealing with Syncarida, Mictacea or Thermosbaenacea were found. This report does not deal with Amphipoda, Mysidacea or Cumacea. These updates have been made to the Zoological Catalogue of Australia Volume 19.2A on the Australian Biological Resources Study website. Introduction New taxa are listed in bold. Parentheses enclose the names of taxa no longer recognised in the Australian fauna. Other taxa are listed only when they have been referred to in the Volume 19.2A of the Zoological Catalogue of Australia recent literature. Subheadings following each taxon are more (Poore, 2002) dealt with all taxa of malacostracan Crustacea or less are in the style used in the original catalogue. in the superorder Syncarida and orders Isopoda, Tanaidacea, References are listed at the end of the paper and not cited in Mictacea, Thermosbaenacea and Spelaeogriphacea of full with each entry as in the Zoological Catalogue of superorder Peracarida.
    [Show full text]
  • Marine Invertebrate Biodiversity from the Argentine Sea, South Western Atlantic
    A peer-reviewed open-access journal ZooKeys 791: 47–70Marine (2018) invertebrate biodiversity from the Argentine Sea, South Western Atlantic 47 doi: 10.3897/zookeys.791.22587 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research Marine invertebrate biodiversity from the Argentine Sea, South Western Atlantic Gregorio Bigatti1,2,3, Javier Signorelli1 1 Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos, (LARBIM) IBIOMAR-CO- NICET. Bvd. Brown 2915 (9120) Puerto Madryn, Chubut, Argentina 2 Universidad Nacional de la Pata- gonia San Juan Bosco, Boulevard Brown 3051, Puerto Madryn, Chubut, Argentina 3 Facultad de Ciencias Ambientales, Universidad Espíritu Santo, Ecuador Corresponding author: Javier Signorelli ([email protected]) Academic editor: P. Stoev | Received 13 December 2017 | Accepted 7 September 2018 | Published 22 October 2018 http://zoobank.org/ECB902DA-E542-413A-A403-6F797CF88366 Citation: Bigatti G, Signorelli J (2018) Marine invertebrate biodiversity from the Argentine Sea, South Western Atlantic. ZooKeys 791: 47–70. https://doi.org/10.3897/zookeys.791.22587 Abstract The list of marine invertebrate biodiversity living in the southern tip of South America is compiled. In particular, the living invertebrate organisms, reported in the literature for the Argentine Sea, were checked and summarized covering more than 8,000 km of coastline and marine platform. After an exhaustive lit- erature review, the available information of two centuries of scientific contributions is summarized. Thus, almost 3,100 valid species are currently recognized as living in the Argentine Sea. Part of this dataset was uploaded to the OBIS database, as a product of the Census of Marine Life-NaGISA project.
    [Show full text]
  • (Malacostraca) from the Abyssal Plain of the Angola Basin
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 105–112 www.elsevier.de/ode RESULTS OFTHE DIVA-1 EXPEDITION OFRV ‘‘METEOR’’ (CRUISE M48/1) Diversity of peracarid crustaceans (Malacostraca) from the abyssal plain of the Angola Basin Angelika Brandta,Ã, Nils Brenkeb, Hans-Georg Andresa, Saskia Brixa, Ju¨ rgen Guerrero-Kommritza, Ute Mu¨ hlenhardt-Siegela, Johann-Wolfgang Wa¨ geleb aZoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany bRuhr-University Bochum, 44780 Bochum, Germany Abstract During the expedition DIVersity of the abyssal Atlantic benthos (DIVA-1) with RV ‘‘Meteor’’ in July 2000, samples were taken at seven stations by means of an epibenthic sledge north of the Walvis Ridge in the Angola Basin off Namibia in 5125–5415 m depth. Two hundred and forty one species of Peracarida are identified from the material so far. Dominant elements of the peracarid fauna were Isopoda, which were most abundant and diverse, 100 species were identified from 1326 individuals, followed by Tanaidacea with 50 species and 194 individuals, and Cumacea with 45 species and 479 individuals. Amphipoda were less frequent with 39 species and 150 individuals, Mysidacea were rarest yielding only 7 species and 34 individuals. The fauna is characterized by 118 rare species, most of them occurring only with single specimens at one station. Only 123 species occur at more than one station and only two species of the Eurycopinae (Isopoda) at all stations. The few species which are already known are either cosmopolitan or typical for the Atlantic Ocean, while elements known from the Southern Ocean are rare indicating that the Walvis Ridge is an effective distribution barrier for deep-sea organisms.
    [Show full text]
  • Irish Biodiversity: a Taxonomic Inventory of Fauna
    Irish Biodiversity: a taxonomic inventory of fauna Irish Wildlife Manual No. 38 Irish Biodiversity: a taxonomic inventory of fauna S. E. Ferriss, K. G. Smith, and T. P. Inskipp (editors) Citations: Ferriss, S. E., Smith K. G., & Inskipp T. P. (eds.) Irish Biodiversity: a taxonomic inventory of fauna. Irish Wildlife Manuals, No. 38. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Section author (2009) Section title . In: Ferriss, S. E., Smith K. G., & Inskipp T. P. (eds.) Irish Biodiversity: a taxonomic inventory of fauna. Irish Wildlife Manuals, No. 38. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover photos: © Kevin G. Smith and Sarah E. Ferriss Irish Wildlife Manuals Series Editors: N. Kingston and F. Marnell © National Parks and Wildlife Service 2009 ISSN 1393 - 6670 Inventory of Irish fauna ____________________ TABLE OF CONTENTS Executive Summary.............................................................................................................................................1 Acknowledgements.............................................................................................................................................2 Introduction ..........................................................................................................................................................3 Methodology........................................................................................................................................................................3
    [Show full text]
  • Tese Doutoramento Cata
    CATARINA DE LOURDES ARAÚJO SILVA TAXONOMY, SYSTEMATICS, MORPHOLOGICAL AND MOLECULAR PHYLOGENY OF THE ORDER TANAIDACEA (CRUSTACEA: PERACARIDA), FROM THE ANTARCTIC, ATLANTIC AND PACIFIC OCEANS Tese de Candidatura ao grau de Doutor em Ciências Biomédicas submetida ao Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. Orientador: Doutor Kim Larsen Coorientadora: Doutora Elsa Froufe Investigadora auxiliar Laboratório de Ecologia Aquática e Evolução, Centro Interdisciplinar de Investigação Marinha e Ambiental Coorientador: Doutor João Coimbra Professor Emérito Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto Esta tese foi financiada por uma bolsa de doutoramento da Fundação CAPES (Coordenação de Aperfeiçoime nto de Pessoal de Nível Superior), nº do Processo: 5428/10-6. À minha família. “...Sei que há léguas a nos separar Tanto mar, tanto mar Sei, também, como é preciso, Navegar, navegar...” Tanto Mar (Chico Buarque de Holanda) i AGRADECIMENTOS Em primeiro, tenho muito a agradecer aos meus Pais, Paulo e Cássia, por sempre acreditarem e incentivarem em todas as minhas decisões. Amo muito vocês. Obrigada Painho e Mainha! Ao meu orientador Dr. Kim Larsen, por todo aprendizado e por ter confiado em mim. À minha coorientadora Dr. Elsa Froufe (CIIMAR/LAEE), por me orientar, ter tido paciência com a ajuda nas análises moleculares, na escrita e pelas tantas discussões construtivas, sejam de "puxões de orelha" e incentivos ao mundo da genética molecular. Seus ensinamentos não serão esquecidos!! :) Ao Professor Emérito João Coimbra, por ter aceite ser coorientador deste trabalho, e pela confiança que demonstrou neste projecto. À Fundação CAPES pelo financiamento desta tese de doutoramento. Ao Professor Dr.
    [Show full text]