New Timetable and Pricing System for the Tokaido and Sanyo Shinkansen Lines to Be Implemented in Conjunction with the Opening of Shinagawa Station
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Yamanaka Onsen Niigata Fukushima
Tourist map of Yamanaka Onsen Niigata Fukushima and Hokuriku area Nagaoka Joetsumyoko Sta. Itoigawa Echigoyuzawa Sta. Shintakaoka Sta. Iiyama Kurobe Kanazawa Unazukionsen Sta. Nagano Toyama Tateyama/Kurobe Kaga Onsen Sta. Komatsu Annakaharuna Sta. Utsunomiya Kenrokuen Garden Ueda Tojinbo Takasaki Awaraonsen Sta. Shirakawago Sakudaira Sta. Karuizawa Fukui Yamanaka Onsen Omiya The aroma of the Onsen has been healing travelers Nanjo Eiheiji Temple Tokyo since its inauguration 1300 years ago. Tsuruga Maibara Tottori Nagoya Kyoto Shizuoka Kobe Okayama Shinosaka Sta. Access to Yamanaka Onsen Train To JR Line Kaga Onsen Station ◎ Tokyo – Hokuriku Shinkansen (Kagayaki or Hakutaka) – Kanazawa – Hokuriku line express (Shirasagi or underbird) – Kaga Onsen station Approx 2 hours 55 minutes ◎ Tokyo – Tokaido Shinkansen (Hikari) – Maibara – Hokuriku line express (Shirasagi) – Kaga Onsen station Approx 3 hours 50 minutes ◎ Kyoto – Hokuriku line express (underbird) – Kaga Onsen station Approx 1 hour 45 minutes ◎ Osaka – Hokuriku line express (underbird) – Kaga Onsen station Approx 2 hours 20 minutes ◎ Nagoya – Tokaido Shinkansen (Hikari) – Maibara – Hokuriku line express (Shirasagi) – Kaga Onsen station Approx 2 hours 10 minutes ◎ Kanazawa – Hokuriku line express (Shirasagi or underbird) – Kaga Onsen station Approx 25 minutes * Time calculated for the fastest trains available. * Transportation services available from Kaga Onsen Station. * 20 minutes from Kaga Onsen Station by taxi. Hokuriku Shinkansen running between Kanazawa and Tokyo was put into service on March 14th 2015. Hokuriku Shinkansen made it 1 hour and 20 minutes faster to travel from Tokyo to Kanazawa. Airplane To Komatsu airport ◎ From Haneda Approx 1 hour ◎ From Narita Approx 1 hour 20 minutes ◎ From Sapporo Approx 1 hour 45 minutes ◎ From Sendai Approx 1 hour 10 minutes ◎ From Fukuoka Approx 1 hour 30 minutes * Approx 30 minutes by Can Bus from Komatsu airport to Kaga Onsen. -
About Suspension of Some Trains
About suspension of some trains Some trains will be suspended considering the transport of passengers due to the outbreak of the Novel Coronavirus. *Please note that further suspension may be subject to occur. 【Suspended Kyushu Shinkansen】 (May 11 – 31) ○Kumamoto for Kagoshima-Chūō ※Service between Kumamoto and Shin-Osaka is available. Name of train Kumamoto Kagoshima-Chūō Day of suspension SAKURA 545 10:34 11:20 May 11~31 SAKURA 555 15:23 16:10 May 11~31 SAKURA 409 12:18 13:15 May 11~31 ○Kagoshima-Chūō for Kumamoto ※Service between Kumamoto and Shin-Osaka is available. Name of train Kagoshima-Chūō Kumamoto Day of suspension SAKURA 554 11:34 12:20 May 11~31 SAKURA 562 14:35 15:20 May 11~31 SAKURA 568 17:18 18:03 May 11~31 MIZUHO 612 18:04 18:48 May 11~31 【Suspended Hokuriku Shinkansen】 (May 1 – 31) ○Tōkyō for Kanazawa Name of train Tōkyō Kanazawa Day of suspension KAGAYAKI 521 8:12 10:47 May 1~31 KAGAYAKI 523 10:08 12:43 May 2. 9. 16. 23. 30 KAGAYAKI 525 10:48 13:23 May 1~4. 9. 16. 23. 30 KAGAYAKI 527 11:48 14:25 May 2. 3. 5. 6 KAGAYAKI 529 12:48 15:26 May 2~6 KAGAYAKI 531 13:52 16:26 May 1. 3~6. 8. 15. 22. 29. 31 KAGAYAKI 533 14:52 17:26 May 1. 8~10. 15~17. 22~24. 29~31 KAGAYAKI 535 17:04 19:41 May 2~6 KAGAYAKI 539 19:56 22:30 May 1~6. -
Uredas, URGENT EARTHQUAKE DETECTION and ALARM SYSTEM, NOW and FUTURE
13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 908 UrEDAS, URGENT EARTHQUAKE DETECTION AND ALARM SYSTEM, NOW AND FUTURE Yutaka NAKAMURA 1 SUMMARY UrEDAS, Urgent Earthquake Detection and Alarm System, can realize the real-time early earthquake detection and alarm system in the world. There is a local government that has realized a tsunami warning system using real-time estimated earthquake parameters as magnitude and location, distributed by UrEDAS. On 26th May 2003, the Miyagiken-Oki Earthquake was occurred. It was so large that the maximum acceleration of about 600 Gal was observed along the Shinkansen line and 23 columns of the rigid frame viaducts (RC) were severely cracked. This earthquake occurred on the business hours of the Shinkansen. As expected, coastline “Compact UrEDAS” along the Shinkansen took out the early P-wave alarm before the destructive earthquake motion and the validity of this system was proved for the first time. INTRODUCTION UrEDAS is the only real time P-wave alarm system over the world on practical use. It is characterized to be able to process digitized waveform step by step without saving. Amount of procedure does not differs either earthquake occurs or not, so failure because of over load will not occur. The 2003 Miyagiken-Oki earthquake (Mj 7.1) occurred on 26th May, Compact UrEDAS worked as expected. It was for the first time that the validity of the early warning system was verified under circumstances of big earthquake such as rigid frame viaducts of Shinkansen were damaged. In this paper, the present condition of P-wave early detection system UrEDAS will be viewed referring to cases at work, also result of test observation where faults exists will be reported. -
About Suspension of Some Temporary Trains(Translation:PDF76KB)
About suspension of some temporary trains Some temporary trains will be suspended considering the transport of passengers due to the outbreak of the Novel Coronavirus. *Please note that further suspension may be subject to occur. 【Suspended Sanyo Shinkansen】 (April 1 – May 6) ○Tōkyō for Hakata Name of train Tōkyō Hakata Day of suspension NOZOMI 135 7:12 12:14 May 6 NOZOMI 137 7:21 12:19 May 3. 4 NOZOMI 139 8:12 13:14 May 3 NOZOMI 145 9:12 14:14 May 3. 6 NOZOMI 149 10:12 15:14 May 3 NOZOMI 151 10:42 15:47 May 2. 4 NOZOMI 155 11:42 16:47 May 3 NOZOMI 159 12:42 17:47 May 2 NOZOMI 163 13:42 18:47 May 2. 6 NOZOMI 169 14:42 19:47 May 4 NOZOMI 173 15:21 20:19 May 2. 3. 5. 6 NOZOMI 181 16:42 21:46 May 6 NOZOMI 183 17:12 22:14 May 1. 6 NOZOMI 185 17:21 22:19 May 4 NOZOMI 189 18:12 23:14 May 1. 5 ○Hakata for Tōkyō Name of train Hakata Tōkyō Day of suspension NOZOMI 136 7:58 13:03 May 3 NOZOMI 138 8:31 13:33 May 1 NOZOMI 140 8:58 14:03 May 2. 3. 5. 6 NOZOMI 144 9:58 15:03 May 2. 3. 5. 6 NOZOMI 150 11:31 16:33 May 2. 5 NOZOMI 152 11:58 17:03 May 4 NOZOMI 156 12:58 18:03 May 3 NOZOMI 160 13:31 18:33 May 4 NOZOMI 170 15:31 20:33 May 2. -
Shinkansen Bullet Train
Jōetsu Shinkansen (333.9 km) Train Names: TOKI, TANIGAWA Max-TOKI, Max-TANIGAWA JAPAN RAIL PASS Can also be Used for Shinkansen Jōetsu Shinkansen "Max-TOKI"etc. “bullet train” Travel Akita Shinkansen "KOMACHI" Akita Shinkansen (662.6 km) Train Name: KOMACHI Akita Shin-Aomori Yamagata Shinkansen "TSUBASA" Hokuriku Shinkansen (450.5 km) Yamagata Shinkansen Train Names: KAGAYAKI, HAKUTAKA, (421.4 km) Shinjo¯ Morioka TSURUGI, ASAMA Train Name: TSUBASA Niigata Yamagata Sendai Kanazawa Toyama Nagano Hokuriku Shinkansen "KAGAYAKI"etc. Fukushima Takasaki Omiya¯ Sanyō & Kyūshū Shinkansen "SAKURA" Sanyō Shinkansen (622.3 km) Train Names: NOZOMI*, MIZUHO*, Tōhoku Shinkansen "HAYABUSA "etc. Tōkaidō & Sanyō Shinkansen "HIKARI" HIKARI (incl. HIKARI Rail Star), SAKURA, KODAMA Tōkaidō Shinkansen (552.6 km) (Tōkyō thru Hakata, 1,174.9km) Train Names: NOZOMI*, HIKARI, KODAMA Hakata Kokura Hiroshima Okayama Shin-Osaka¯ Kyōto Nagoya Shin-Yokohama Shinagawa Tokyo¯ ¯ * There are six types of train services, “NOZOMI,” “MIZUHO,” “HIKARI,” “SAKURA,” “KODAMA” and “TSUBAME” trains on the Tōkaidō, Sanyō and Kyūshū Shinkansen, and the stations at which trains stop vary with train types. The JAPAN RAIL PASS is only valid for “HIKARI,” “SAKURA,” “KODAMA” Tōhoku Shinkansen "HAYATE," "YAMABIKO,"etc. and “TSUBAME” trains, and not valid for any seats, reserved or non-reserved, on “NOZOMI” and “MIZUHO” trains. To travel on the Tōkaidō, Sanyō and Kyūshū Shinkansen, the pass holders must take Tōhoku Shinkansen (713.7 km) “HIKARI,” “SAKURA,” “KODAMA” or “TSUBAME” trains, or -
Case of High-Speed Ground Transportation Systems
MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation. -
Interaction of Lifecycle Properties in High Speed Rail Systems Operation
Interaction of Lifecycle Properties in High Speed Rail Systems Operation by Tatsuya Doi M.E., Aeronautics and Astronautics, University of Tokyo, 2011 B.E., Aeronautics and Astronautics, University of Tokyo, 2009 Submitted to the Institute for Data, Systems, and Society in partial fulfillment of the requirements for the degree of Master of Science in Engineering Systems at the Massachusetts Institute of Technology June 2016 © 2016 Tatsuya Doi. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: ____________________________________________________________________ Institute for Data, Systems, and Society May 6, 2016 Certified by: __________________________________________________________________________ Joseph M. Sussman JR East Professor of Civil and Environmental Engineering and Engineering Systems Thesis Supervisor Certified by: __________________________________________________________________________ Olivier L. de Weck Professor of Aeronautics and Astronautics and Engineering Systems Thesis Supervisor Accepted by: _________________________________________________________________________ John N. Tsitsiklis Clarence J. Lebel Professor of Electrical Engineering IDSS Graduate Officer 1 2 Interaction of Lifecycle Properties In High Speed Rail Systems Operation by Tatsuya Doi Submitted to the Institute for Data, Systems, and Society on May 6, 2016 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering Systems ABSTRACT High-Speed Rail (HSR) has been expanding throughout the world, providing various nations with alternative solutions for the infrastructure design of intercity passenger travel. HSR is a capital-intensive infrastructure, in which multiple subsystems are closely integrated. Also, HSR operation lasts for a long period, and its performance indicators are continuously altered by incremental updates. -
'Camellia T'. Synonym for 'Donckelaeri'. (Masayoshi). TC Cole
T. T. Fendig. 1951, American Camellia Yearbook, p.77 as ‘Camellia T’. Synonym for ‘Donckelaeri’. (Masayoshi). T.C. Cole. Trewidden Estate Nursery, 1995, Retail Camellia List, p.8. Abbreviation for Thomas Cornelius Cole. T.C. Patin. (C.japonica) SCCS., 1976, Camellia Nomenclature, p.147: Light red. Very large, full, semi- double with irregular, large petals and a spray of large stamens. Originated in USA by T.C. Patin, Hammond, Louisiana. Sport: T.C. Patin Variegated. T.C. Patin Variegated. (C.japonica), SCCS., 1976, Camellia Nomenclature, p.147 as ‘T.C. Patin Var.’: A virus variegated form of T.C. Patin - Light red blotched white. Originated in USA by T.C. Patin, Hammond, Louisiana. T.D. Wipper. Nagoya Camellia Society Bulletin, 1992, No.25. Synonym for Dave’s Weeper. T.G. Donkelari. Lindo Nurseries Price List, 1949, p.7. Synonym for ‘Donckelaeri’. (Masayoshi). T.K. Blush. (C.japonica) Wilmot, 1943, Camellia Variety Classification Report, 1943, p.14: A light pink sport of T.K. Variegated. Originated in USA. Synonym: ‘T.K. Pink’. T.K. Number 4. Florida Nursery and Landscaping Co. Catalogue, 1948 as ‘T.K. No.4’. Synonym for T.K. Variegated. T.K. Pink. Morris, 1954, RHS., The Rhododendron and Camellia Yearbook, p.113. Synonym for T.K. Blush. T.K. Red. Semmes Nursery Catalogue, 1942-1943, p.21. Synonym for T.K. Variegated Red. T.K. Variegata. Kiyono Nursery Catalogue, 1942-1943. Synonym for T.K. Variegated. T.K. Variegated. (C.japonica) Kiyono Overlook Nursery Catalogue, 1934, p.14: Semi-double. Light pink edged dark pink. Gerbing’s Azalea Gardens Catalogue, 1938-1939: Semi-double, white flowers striped pink, rose and lavender, some flowers solid colour, purple and pink. -
Electrical Energy Utilisation
Jacek F. Gieras Izabella A.Gieras Electrical Energy Utilisation Wydawnictwo Adam Marszalek Contents Preface ........................................................VII 1 ENERGY AND DRIVES .................................. 1 1.1 Electrical energy . 1 1.2 Conservation of electrical energy . 2 1.3 Classification of electric motors . 4 1.4 Applications of electric motor drives . 5 1.5 Trends in the electric-motor and drives industry . 11 1.6 How many motors are used in affluent homes ? . 11 1.7 Fundamentals of mechanics of machines . 12 1.7.1 Torque and power . 12 1.7.2 Simple gear trains . 12 1.7.3 Efficiency of a gear train . 14 1.7.4 Equivalent moment of inertia . 14 1.8 Torque equation . 18 1.9 Mechanical characteristics of machines . 19 Problems . 21 2 D.C. MOTORS ............................................ 23 2.1 Construction . 23 2.2 Fundamental equations. 24 2.2.1 Terminal voltage . 24 2.2.2 Armature winding EMF . 25 2.2.3 Magnetic flux . 25 2.2.4 Electromagnetic (developed) torque . 25 2.2.5 Electromagnetic power . 26 2.2.6 Rotor and commutator linear speed . 26 2.2.7 Input and output power . 26 2.2.8 Losses . 27 2.2.9 Armature line current density . 28 2.3 D.c. shunt motor . 28 VI Contents 2.4 D.c. series motor . 30 2.5 Compound-wound motor . 31 2.6 Starting . 32 2.7 Speed control of d.c. motors . 34 2.8 Braking . 36 2.8.1 Braking a shunt d.c. motor . 37 2.8.2 Braking a series d.c. motor . 37 2.9 Permanent magnet d.c. -