Laboratory Manual Communications Laboratory Ee 321

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory Manual Communications Laboratory Ee 321 LABORATORY MANUAL COMMUNICATIONS LABORATORY EE 321 © Khosrow Rad Revised 2011 DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING CALIFORNIA STATE UNIVERSITY, LOS ANGELES Lab-Volt Systems, Inc 1 BRIEF CONTENTS Experiment 1 Introduction to Analog Communications 4 Exercise 1-2 (Familiarization with the AM Equipment) 11 Exercise 1-3 (Frequency Conversion of Baseband Signals) 15 Experiment 2 The Generations of AM Signals 22 Exercise 2-1 (An AM Signal) 29 Exercise 2-2 (Percentage Modulation) 35 Exercise 2-3 (Carrier and Sideband Power) 45 Experiment 3 Reception of AM Signals 55 Exercise 3-1 (The RF Stage Frequency Response) 61 Exercise 3-2 (the Mixer and Image Frequency Rejection) 65 Experiment 4 Reception of AM Signals 69 Exercise 4-1 (The IF Stage Frequency Response) 73 Exercise 4-2 (The Envelope Detector) 77 Experiment 5 Single Sideband Modulation –SSB 84 Exercise 5-1 (Generating SSB signals by the Filter Method) 91 Experiment 6: Fundamentals of Frequency Modulation 96 Exercise 6-1 (FM Modulation Index) 102 Exercise 6-2 (POWER DISTRIBUTION) 107 Experiment 7 Generation of FM Signals 117 Exercise 7 Direct Method of Generating FM Signals 121 Experiment 8 Exercise 8 (Indirect Method of Generating FM Signals) 126 MATLAB 132 These laboratory note are reproduced in part from the Lab-Volt 2 EE321 Dr. Rad Experiment 1 Part 1: Exercise 1-2 (Familiarization with the AM Equipment) Part 2: Exercise 1-3 (Frequency Conversion of Baseband Signals) 3 INTRODUCTION TO ANALOG COMMUNICATIONS OBJECTIVE At the completion of this unit, you will be able to describe the basic principles of analog radio communications, the ANALOG COMMUNICATIONS circuit board, and the balanced modulator. UNIT FUNDAMENTALS A block diagram of a communication system is shown. Communication is the transfer of information from one place to another. A bidirectional communication system operates in opposite directions. The receiver can respond to the sender. Radio communication uses electrical energy to transmit information. Because electrical energy travels almost as fast as light, radio communication is essentially instantaneous. A radio transmitter converts audio (sound) signals to electrical signals that are sent over wires or through space. A radio receiver converts the electromagnetic waves back to sound waves so that the information can be understood. 4 The transmitted information is the intelligence signal or message signal In this course, the term message signal refers to the transmitted information. Message signals are in the Audio Frequency (AF) range of low frequencies from about 20 Hz to 20 kHz. The Radio Frequency (RF) is the carrier signal. Carrier signals have high frequencies that range from 10 kHz up to about 1000 GHz. A radio transmitter sends the low frequency message signal at the higher carrier signal frequency by combining the message signal with the carrier signal. Modulation is the process of changing a characteristic of the carrier signal with the message signal. In the transmitter, the message signal modulates the carrier signal. The modulated carrier signal is sent to the receiver where demodulation of the carrier occurs to recover the message signal. The three principal forms of modulation are the following: 1. Amplitude Modulation (AM) 2. Frequency Modulation (FM) 3. Phase Modulation (PM) FM and PM are types of angle modulation. In modulation, the message signal changes the amplitude, frequency, or phase of the carrier signal. 5 To prevent interference, every radio communication transmits at its own frequency. The designations for carrier frequency ranges are shown. The ANALOG COMMUNICATIONS circuit board contains the following circuit blocks: • VCO-LO • AM/SSB TRANSMITTER • PHASE MODULATOR • QUADRATURE DETECTOR • VCO-HI • AM/SSB RECEIVER • PHASE-LOCKED LOOP These circuit blocks permit you to configure transmission and reception circuits for amplitude, frequency, and phase-modulated signals. On the ANALOG COMMUNICATIONS circuit board, a versatile Integrated Circuit (IC) called a balanced modulator performs the following functions: • amplitude modulation • Double-Sideband (DSB)modulation • mixer • product detector • phase detector 6 NEW TERMS AND WORDS audio - signals that a person can hear. electromagnetic waves - the radiant energy produced by oscillation of an electric charge. intelligence signal - any signal that contains information; it is also called the message signal. message signal - any signal that contains information; it is also called the intelligence signal. Audio Frequency (AF) - frequencies that a person can hear. AF signals range from about 20 Hz to 20 kHz. Radio Frequency (RF) - the transmission frequency of electromagnetic (radio) signals. RF frequencies are from about 300 kHz to the 1,000,000 kHz range. carrier signal - a single, high-frequency signal that can be modulated by a message signal and transmitted. Modulation - the process of combining the message signal with the carrier signal that causes the message signal to vary a characteristic of the carrier signal. demodulation - the process of recovering or detecting the message signal from the modulated carrier frequency. Amplitude Modulation (AM) - the process of combining the message signal with the carrier signal and the two sidebands: the lower sideband and the upper sideband. Frequency Modulation (FM) - the process of combining the message signal with the carrier signal that causes the message signal to vary the frequency of the carrier signal. Phase Modulation (PM) - the process of combining the message signal with the carrier signal that causes the message signal to vary the phase of the carrier signal. angle modulation - the process of combining the message signal with the carrier signal that causes the message signal to vary the frequency and/or phase of the carrier signal. balanced modulator - an amplitude modulator that can be adjusted to control the amount of modulation. Double-Sideband (DSB) - an amplitude modulated signal in which the carrier is suppressed, leaving only the two sidebands: the lower sideband and the upper sideband. mixer - an electronic circuit that combines two frequencies. product detector - a detector whose audio frequency output is equal to the product of the Beat Frequency Oscillator (BFO) and the RF signal inputs. phase detector - an electronic circuit whose output varies with the phase differential of the two input signals. envelopes - the waveform of the amplitude variations of an amplitude modulated signal. sidebands - the frequency bands on each side of the carrier frequency that are formed during modulation; the sideband frequencies contain the intelligence of the message signal. AM - an amplitude modulated signal that contains the carrier signal and the two sidebands: the lower sideband and the upper sideband. Dr. Rad 7 EE321 bandwidth - the frequency range, in hertz (Hz), between the upper and lower frequency limits. harmonics - signals with frequencies that are an integral multiple of the fundamental frequency. Beat Frequency Oscillator (BFO) - an oscillator whose output frequency is approximately equal to the transmitter's carrier frequency and is input to a product detector EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the AM / DSB / SSB Generator and the AM / DSB Receiver, as well as terminology used in amplitude modulation. Discussion Modulation is the process of adding information, also called intelligence, to a high frequency radio wave for communication over long distances. This process depends on the type of modulation used, but in general, the amplitude of the information signal is used to vary the amplitude, phase, or frequency of the radio wave. In this manual, the information signal will be referred to as the message, which is usually a low frequency audio signal in the 20 Hz to 2O kHz range. The radio frequency (RF) signal is known as the carrier, and the frequencies of the message and the RF carrier are symbolized by f m and f S respectively. In amplitude modulation, the amplitude of the carrier wave is made to vary in accordance with the message signal. The waveform of a typical AM signal is shown in Figure 1-1. lt represents a high frequency carrier modulated by a sine wave. Notice the dashed curve drawn through the peaks and valleys of the AM waveform. This is called the envelope and tl is identical to the waveform of the message signal. Figure 1-1. A typical AM signal. Familiarization with the AM Equipment When the RF carrier wave is amplitude modulated, sidebands (or sideband fre- quencies) are produced. For a 2-kHz tone that modulates a 1000 kHz (1 MHz) carrier, the sideband frequencies are .f c + fm = 1 002 000 Hz, and fc – fm = 998 000 Hz. Figure 1-2 shows the frequency components of the AM signal. Figure 1-6. Frequency components of an AM signal. Dr. Rad 8 EE321 1. A system for AM transmission and reception is built from components shown in figure 1.7. Fig 1.7 Lab-Volt modular communications lab components. Equipment Required RF NOISE FREQUENCY GENERATOR COUNTER AM/DSB/SSB AM/DSB GENERATOR RECEIVER Function DUAL AUDIO Generator A AMPLIFIER OSCILLOSCOPE Function POWER SPECTRUM Generator B SUPPLY ANALYZER Brief description of the equipment: 1) Function generator A and B: These two function generator is used to generator message signals. Dr. Rad 9 EE321 2) AM/DSB/SSB GENERATOR: It is used to for amplitude modulation and generator either double side band or single side band waveforms for transmission. 3) RF Noise Generator: This can be used to generate RF noise. 4) Power Supply:
Recommended publications
  • ETR 132 TECHNICAL August 1994 REPORT
    ETSI ETR 132 TECHNICAL August 1994 REPORT Source: EBU/ETSI JTC Reference: DTR/JTC-00011 ICS: 33.060 Key words: Broadcasting, FM, radio, transmitter, VHF European Broadcasting Union Union Européenne de Radio-Télévision EBU UER Radio broadcasting systems; Code of practice for site engineering Very High Frequency (VHF), frequency modulated, sound broadcasting transmitters ETSI European Telecommunications Standards Institute ETSI Secretariat Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: [email protected] Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16 Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 1994. All rights reserved. New presentation - see History box © European Broadcasting Union 1994. All rights reserved. Page 2 ETR 132: August 1994 Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page. Page 3 ETR 132: August 1994 Contents Foreword .......................................................................................................................................................7 1 Scope
    [Show full text]
  • BETS-5 Issue 1 November 1, 1996
    BETS-5 Issue 1 November 1, 1996 Spectrum Management Broadcasting Equipment Technical Standard Technical Standards and Requirements for AM Broadcasting Transmitters Aussi disponible en français - NTMR-5 Purpose This document contains the technical standards and requirements for the issuance of a Technical Acceptance Certificate (TAC) for AM broadcasting transmitters. A certificate issued for equipment classified as type approved or as technically acceptable before the coming into force of these technical standards and requirements is considered to be a valid and subsisting TAC. A Technical Acceptance Certificate is not required for equipment manufactured or imported solely for re-export, prototyping, demonstration, exhibition or testing purposes. i Table of Contents Page 1. General ...............................................................1 2. Testing and Labelling ..................................................1 3. Standard Test Conditions ..............................................2 4. Transmitting Equipment Standards .....................................3 5. Equipment Requirements ..............................................4 6. RF Carrier Performance Standards .................................... 5 6.1 Power Output Rating .................................................5 6.2 Modulation Capability ................................................5 6.3 Carrier Frequency Stability ............................................6 6.4 Carrier Level Shift ...................................................7 6.5 Spurious Emissions
    [Show full text]
  • A Simple Synchronous-AM Demodulator and Complete Schematics for the DDC-Based Receiver
    A Simple Synchronous-AM Demodulator and Complete Schematics for the DDC-Based Receiver KC1HR adds AM reception to his digital-downconverter-based (DDC) receiver. By Peter Traneus Anderson, KC1HR This direct-conversion receiver is for signals from 10 kHz to 12 MHz. [1, 2, 3, 4, 5] Using an alias response adds coverage from 13 MHz to 22 MHz. Frequency conversion occurs digitally, giving performance impossible in conventional analog receivers. The dynamic range is not as good as that of the best analog receivers, but the filter skirts are sharper than those of analog receivers. For casual listening, the receiver performs very well. The receiver operates in various modes: synchronous AM (SAM) with a –3 dB audio passband of 6836 Hz, upper sideband (USB) with a –3 dB passband of 1709 Hz, lower sideband (LSB) with a –3 dB passband of 1709 Hz and CW with –3 dB passbands of 1709 Hz, 427 Hz and 107 Hz. The –102 dB passband is 1.4 times the –3 dB passband. For SAM mode, the –102 dB passband is 9570 Hz either side of the carrier, so an adjacent-station carrier 10 kHz away is not heard. For the LSB and USB modes, the –102 dB passband is 2393 Hz, so SSB stations could be placed at 2400 Hz spacing, assuming the transmitters had the same passband as this receiver. For the CW modes, the –102 dB passbands are 2393 Hz, 598 Hz and 150 Hz. In this DDC-based receiver, USB and LSB modes pass audio frequencies between 671 Hz and 2380 Hz for a total bandwidth of 1709 Hz.
    [Show full text]
  • Radio Communications in the Digital Age
    Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS
    [Show full text]
  • Chapter 4, Current Status, Knowledge Gaps, and Research Needs Pertaining to Firefighter Radio Communication Systems
    NIOSH Firefighter Radio Communications CHAPTER IV: STRUCTURE COMMUNICATIONS ISSUES Buildings and other structures pose difficult problems for wireless (radio) communications. Whether communication is via hand-held radio or personal cellular phone, communications to, from, and within structures can degrade depending on a variety of factors. These factors include multipath effects, reflection from coated exterior glass, non-line-of-sight path loss, and signal absorption in the building construction materials, among others. The communications problems may be compounded by lack of a repeater to amplify and retransmit the signal or by poor placement of the repeater. RF propagation in structures can be so poor that there may be areas where the signal is virtually nonexistent, rendering radio communication impossible. Those who design and select firefighter communications systems cannot dictate what building materials or methods are used in structures, but they can conduct research and select the radio system designs and deployments that provide significantly improved radio communications in this extremely difficult environment.4 Communication Problems Inherent in Structures MULTIPATH Multipath fading and noise is a major cause of poor radio performance. Multipath is a phenomenon that results from the fact that a transmitted signal does not arrive at the receiver solely from a single straight line-of-sight path. Because there are obstacles in the path of a transmitted radio signal, the signal may be reflected multiple times and in multiple paths, and arrive at the receiver from various directions along various paths, with various signal strengths per path. In fact, a radio signal received by a firefighter within a building is rarely a signal that traveled directly by line of sight from the transmitter.
    [Show full text]
  • History of Radio Broadcasting in Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1963 History of radio broadcasting in Montana Ron P. Richards The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Richards, Ron P., "History of radio broadcasting in Montana" (1963). Graduate Student Theses, Dissertations, & Professional Papers. 5869. https://scholarworks.umt.edu/etd/5869 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE HISTORY OF RADIO BROADCASTING IN MONTANA ty RON P. RICHARDS B. A. in Journalism Montana State University, 1959 Presented in partial fulfillment of the requirements for the degree of Master of Arts in Journalism MONTANA STATE UNIVERSITY 1963 Approved by: Chairman, Board of Examiners Dean, Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number; EP36670 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiuartation PVUithing UMI EP36670 Published by ProQuest LLC (2013).
    [Show full text]
  • En 303 345 V1.1.0 (2015-07)
    Draft ETSI EN 303 345 V1.1.0 (2015-07) HARMONISED EUROPEAN STANDARD Radio Broadcast Receivers; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU 2 Draft ETSI EN 303 345 V1.1.0 (2015-07) Reference DEN/ERM-TG17-15 Keywords broadcast, digital, radio, receiver ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Maintenance of Remote Communication Facility (Rcf)
    ORDER rlll,, J MAINTENANCE OF REMOTE commucf~TIoN FACILITY (RCF) EQUIPMENTS OCTOBER 16, 1989 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION AbMINISTRATION Distribution: Selected Airway Facilities Field Initiated By: ASM- 156 and Regional Offices, ZAF-600 10/16/89 6580.5 FOREWORD 1. PURPOSE. direction authorized by the Systems Maintenance Service. This handbook provides guidance and prescribes techni- Referenceslocated in the chapters of this handbook entitled cal standardsand tolerances,and proceduresapplicable to the Standardsand Tolerances,Periodic Maintenance, and Main- maintenance and inspection of remote communication tenance Procedures shall indicate to the user whether this facility (RCF) equipment. It also provides information on handbook and/or the equipment instruction books shall be special methodsand techniquesthat will enablemaintenance consulted for a particular standard,key inspection element or personnel to achieve optimum performancefrom the equip- performance parameter, performance check, maintenance ment. This information augmentsinformation available in in- task, or maintenanceprocedure. struction books and other handbooks, and complements b. Order 6032.1A, Modifications to Ground Facilities, Order 6000.15A, General Maintenance Handbook for Air- Systems,and Equipment in the National Airspace System, way Facilities. contains comprehensivepolicy and direction concerning the development, authorization, implementation, and recording 2. DISTRIBUTION. of modifications to facilities, systems,andequipment in com- This directive is distributed to selectedoffices and services missioned status. It supersedesall instructions published in within Washington headquarters,the FAA Technical Center, earlier editions of maintenance technical handbooksand re- the Mike Monroney Aeronautical Center, regional Airway lated directives . Facilities divisions, and Airway Facilities field offices having the following facilities/equipment: AFSS, ARTCC, ATCT, 6. FORMS LISTING. EARTS, FSS, MAPS, RAPCO, TRACO, IFST, RCAG, RCO, RTR, and SSO.
    [Show full text]
  • Reception Performance Improvement of AM/FM Tuner by Digital Signal Processing Technology
    Reception performance improvement of AM/FM tuner by digital signal processing technology Akira Hatakeyama Osamu Keishima Kiyotaka Nakagawa Yoshiaki Inoue Takehiro Sakai Hirokazu Matsunaga Abstract With developments in digital technology, CDs, MDs, DVDs, HDDs and digital media have become the mainstream of car AV products. In terms of broadcasting media, various types of digital broadcasting have begun in countries all over the world. Thus, there is a demand for smaller and thinner products, in order to enhance radio performance and to achieve consolidation with the above-mentioned digital media in limited space. Due to these circumstances, we are attaining such performance enhancement through digital signal processing for AM/FM IF and beyond, and both tuner miniaturization and lighter products have been realized. The digital signal processing tuner which we will introduce was developed with Freescale Semiconductor, Inc. for the 2005 line model. In this paper, we explain regarding the function outline, characteristics, and main tech- nology involved. 22 Reception performance improvement of AM/FM tuner by digital signal processing technology Introduction1. Introduction from IF signals, interference and noise prevention perfor- 1 mance have surpassed those of analog systems. In recent years, CDs, MDs, DVDs, and digital media have become the mainstream in the car AV market. 2.2 Goals of digitalization In terms of broadcast media, with terrestrial digital The following items were the goals in the develop- TV and audio broadcasting, and satellite broadcasting ment of this digital processing platform for radio: having begun in Japan, while overseas DAB (digital audio ①Improvements in performance (differentiation with broadcasting) is used mainly in Europe and SDARS (satel- other companies through software algorithms) lite digital audio radio service) and IBOC (in band on ・Reduction in noise (improvements in AM/FM noise channel) are used in the United States, digital broadcast- reduction performance, and FM multi-pass perfor- ing is expected to increase in the future.
    [Show full text]
  • Additive Synthesis, Amplitude Modulation and Frequency Modulation
    Additive Synthesis, Amplitude Modulation and Frequency Modulation Prof Eduardo R Miranda Varèse-Gastprofessor [email protected] Electronic Music Studio TU Berlin Institute of Communications Research http://www.kgw.tu-berlin.de/ Topics: Additive Synthesis Amplitude Modulation (and Ring Modulation) Frequency Modulation Additive Synthesis • The technique assumes that any periodic waveform can be modelled as a sum sinusoids at various amplitude envelopes and time-varying frequencies. • Works by summing up individually generated sinusoids in order to form a specific sound. Additive Synthesis eg21 Additive Synthesis eg24 • A very powerful and flexible technique. • But it is difficult to control manually and is computationally expensive. • Musical timbres: composed of dozens of time-varying partials. • It requires dozens of oscillators, noise generators and envelopes to obtain convincing simulations of acoustic sounds. • The specification and control of the parameter values for these components are difficult and time consuming. • Alternative approach: tools to obtain the synthesis parameters automatically from the analysis of the spectrum of sampled sounds. Amplitude Modulation • Modulation occurs when some aspect of an audio signal (carrier) varies according to the behaviour of another signal (modulator). • AM = when a modulator drives the amplitude of a carrier. • Simple AM: uses only 2 sinewave oscillators. eg23 • Complex AM: may involve more than 2 signals; or signals other than sinewaves may be employed as carriers and/or modulators. • Two types of AM: a) Classic AM b) Ring Modulation Classic AM • The output from the modulator is added to an offset amplitude value. • If there is no modulation, then the amplitude of the carrier will be equal to the offset.
    [Show full text]
  • Chapter 7 Amplitude Modulation
    page 7.1 CHAPTER 7 AMPLITUDE MODULATION Transmit information-b earing message or baseband signal voice-music through a Communications Channel Baseband = band of frequencies representing the original signal for music 20 Hz - 20,000 Hz, for voice 300 - 3,400 Hz write the baseband message signal mt $ M f Communications Channel Typical radio frequencies 10 KHz ! 300 GHz write ct= A cos2f ct c ct = Radio Frequency Carrier Wave A = Carrier Amplitude c fc = Carrier Frequency Amplitude Mo dulation AM ! Amplitude of carrier wavevaries a mean value in step with the baseband signal mt st= A [1 + k mt] cos 2f t c a c Mean value A . c 31 page 7.2 Recall a general signal st= at cos[2f t + t] c For AM at = A [1 + k mt] c a t = 0 or constant k = Amplitude Sensitivity a Note 1 jk mtj < 1or [1 + k mt] > 0 a a 2 f w = bandwidth of mt c 32 page 7.3 AM Signal In Time and Frequency Domain st = A [1 + k mt] cos 2f t c a c j 2f t j 2f t c c e + e st = A [1 + k mt] c a 2 A A c c j 2f t j 2f t c c e + e st = 2 2 A k c a j 2f t c + mte 2 A k c a j 2f t c + mte 2 To nd S f use: mt $ M f j 2f t c e $ f f c j 2f t c e $ f + f c expj 2f tmt $ M f f c c expj 2f tmt $ M f + f c c A c S f = [f f +f +f ] c c 2 A k c a + [M f fc+Mf +f ] c 2 33 page 7.4 st = A [1 + k mt] cos 2f t c a c A c = [1 + k mt][expj 2f t+ expj 2f t] a c c 2 If k mt > 1, then a ! Overmo dulation ! Envelop e Distortion see Text p.
    [Show full text]
  • Fcc and Am Stereo: a Deregulatory Breach of Duty
    THE FCC AND AM STEREO: A DEREGULATORY BREACH OF DUTY JASON B. MEYERt The trend toward governmental deregulation of private enterprise, which began in earnest in the 1970's1 and has gathered momentum under the Reagan administration, has had a significant effect on the telecommunications industry. The Federal Communications Commis- sion (FCC) has reduced regulation of operation and maintenance log- ging2 and eliminated minimum aural transmission power require- ments.' Similarly, a major effort has been made in Congress to enact a bill deregulating broadcast programming.4 In 1984 the FCC justified eliminating or relaxing many licensing requirements on the grounds that such "actions further the Commission's goals of creating, to the maximum extent possible, an unregulated, competitive environment for t A.B. 1980, Princeton University; J.D. Candidate, 1985, University of Pennsylva- nia. The author wrote this Comment while a student at the University of Pennsylvania Law School. I See, e.g., Depository Institutions Deregulation and Monetary Control Act of 1980, Pub. L. No. 96-221, 94 Stat. 132 (codified at scattered sections of Titles 12, 15, 22 & 42 of the U.S.C.) (reducing regulatory control of banks); Airline Deregulation Act of 1978, Pub. L. No. 95-504, 92 Stat. 1705 (codified at 49 U.S.C. §§ 1300-02, 1305-08, 1324, 1341, 1371-79, 1382, 1384, 1386, 1389, 1461, 1482, 1486, 1490, 1504, 1551-52) (reducing regulatory control of airlines). I See Operating and Maintenance Logs for Broadcast and Broadcast Auxiliary Stations, 48 Fed. Reg. 38,473 (1983). ' The Commission abolished minimum aural power requirements that had previ- ously created a situation in which a station's aural range well exceeded its visual range.
    [Show full text]