Chapter 15 Fig 15.2—Multiplying Two Sine Waves of Different Frequencies Produces a New Output Spectrum
Mixers, Modulators and Demodulators 15 base, radio communication involves translating information into radio form, letting it travel for a spell, and translating it back again. Translating information into radio form entails the At process we call modulation, and demodulation is its reverse. One way or another, every transmitter used for radio communication, from the simplest to the most complex, includes a means of modulation; one way or another, every receiver used for radio communication, from the simplest to the most complex, includes a means of demodulation. Modulation involves varying one or both of a radio signal’s basic characteristics—amplitude and frequency (or phase)—to convey information. A circuit, stage or piece of hardware that modulates is called a modulator. Demodulation involves reconstructing the transmitted information from the changing characteristic(s) of a modulated radio wave. A circuit, stage or piece of hardware that demodulates is called a demodulator. Many radio transmitters, receivers and transceivers also contain mixers—circuits, stages or pieces of hardware that combine two or more signals to produce additional signals at sums of and differences between the original frequencies. Amateur Radio textbooks have traditionally handled mixers separately from modulators and demodulators, and modulators separately from demodulators. This chapter, by David Newkirk, W9VES, and Rick Karlquist, N6RK, examines mixers, modulators and demodulators together because the job they do is essentially the same. Modulators and demodulators translate information into radio form and back again; mixers translate one frequency to others and back again. All of these translation processes can be thought of as forms of frequency translation or frequency shifting—the function traditionally ascribed to mixers.
[Show full text]