A New Phylogeny-Based Generic Classification of Costaceae (Zingiberales)

Total Page:16

File Type:pdf, Size:1020Kb

A New Phylogeny-Based Generic Classification of Costaceae (Zingiberales) UC Berkeley UC Berkeley Previously Published Works Title A new phylogeny-based generic classification of Costaceae (Zingiberales) Permalink https://escholarship.org/uc/item/1v06n4pb Journal Taxon, 55(1) ISSN 0040-0262 Authors Specht, Chelsea D. Stevenson, Dennis Wm. Publication Date 2006-02-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California 55 (1) • February 2006: 153–163 Specht & Stevenson • Generic classification of Costaceae A new phylogeny-based generic classification of Costaceae (Zingiberales) Chelsea D. Specht1,2 & Dennis Wm. Stevenson1 1 New York Botanical Garden, Bronx, New York 10458, U.S.A. 2 Current address: University of California, Department of Plant and Microbial Biology, Berkeley, California 94720, U.S.A. [email protected] (author for correspondence) Recent cladistic analysis of multiple molecular data from chloroplast and nuclear genomes as well as mor- phological data have indicated that a reclassification of the family Costaceae is necessary in order to appro- priately reflect phylogenetic relationships. The previously described genera Tapeinochilos, Monocostus, and Dimerocostus are all upheld in the new classification. Monocostus and Dimerocostus are found to be sister taxa. The large pantropical genus Costus is found to be polyphyletic and is thus divided into four genera, three of which are new (Cheilocostus, Chamaecostus, Paracostus). Costus has now a more concise generic concept including morphological synapomorphies previously absent due to the polymorphic nature of the prior non- monophyletic assemblage. Of the three new genera, one (Paracostus) was previously recognized as a subgenus of Costus. Cheilocostus comprises several Asian taxa and is sister to Tapeinochilos, whereas Chamaecostus comprises entirely neotropical taxa and is sister to a neotropical Monocostus + Dimerocostus clade. A reeval- uation of the traditional taxonomy indicates that floral characters and pollination syndromes commonly used to identify groups exhibit homoplasy when analyzed in a cladistic framework and are thus unreliable as taxo- nomic indicators. KEYWORDS: Costaceae, Costus, Zingiberales, classification, phylogenetic taxonomy. family (e.g., Thiselton-Dyer, 1898), but in later treat- INTRODUCTION ments was reduced to subgeneric status within Costus Costaceae is one of the most easily recognizable (Schumann, 1904). Floristic treatments that included groups within the Zingiberales, distinguished from other species of Cadalvena either did not distinguish subgen- families within the order by well-developed and some- era (Koechlin, 1964, 1965; Hepper, 1968) or treated times branched aerial shoots that have a characteristic Costus and Cadalvena as subgenera within Costus monistichous (one-sided) spiral phyllotaxy (e.g., Kirch- (Maas, 1972, 1977). Maas (1972) described several new off & Rutishauser, 1990). Its close relationship with species from South America which he included in C. Zingiberaceae is evidenced by its former placement as a subgenus Cadalvena. No new species from Africa have subfamily within the larger Zingiberaceae family. The been added to Cadalvena since Schumann (1904) and, in placement of Costaceae within Zingiberaceae was large- fact, many of the species included in Schumann’s treat- ly based on broad similarities of inflorescence and floral ment have been subsequently synonymized with the characters. Tomlinson (1962) suggested that, although generic type, Costus spectabilis. these types of characters may indicate common ancestry, In addition to Cadalvena, Schumann (1904) recog- they are not sufficient to overcome the morphological nized four other subgenera in Costus in his treatment of and anatomical differences that warrant independent global Zingiberaceae (including the Costoideae): familial rank of the two lineages which had been pro- Eucostus (= C. subg. Costus according to the current posed by Nakai (1941). International Code of Botanical Nomenclature, ICBN, Costaceae sensu Tomlinson (1962) consisted of four Greuter & al., 2000), Metacostus, Epicostus and Para- genera: Costus, Monocostus, Dimerocostus and Tapeino- costus. These same subgenera were maintained by chilos. Costus, which contains the majority of the species Loesener (1930). In Maas’ treatments of neotropical and maintains the greatest morphological diversity, is Costaceae (1972, 1977), a formal division between the pantropical with its greatest diversity centered in the two subgenera that are found in South America (Costus, neotropics (c. 40 spp.); 25 species occur in tropical Afri- Cadalvena) was maintained. In addition, subgenus ca and about five species in southeastern Asia. A separate Costus was divided into two separate sections: Costus genus, Cadalvena, was recognized when Costoideae was sect. Ornithophilus and Costus sect. Costus. These sec- part of Zingiberaceae (Scitamineae) (Fenzl, 1865) and tions were based upon characters of the labellum and was maintained in some subsequent treatments of the reflected two distinct floral forms associated with polli- 153 Specht & Stevenson • Generic classification of Costaceae 55 (1) • February 2006: 153–163 nation syndromes. Taxa placed in Costus sect. Ornitho- ed floral and geographic diversity. Tapeinochilos, philus all have a tubular labellum adapted to bird polli- Monocostus, and Dimerocostus are also maintained nation (Fig. 1.5), whereas those in Costus sect. Costus because the morphological distinction with which they have a broad labellum with a distinct exposed limb that were originally described corresponds to their monophy- appears to be adapted to pollination by bees. While all ly. A new generic classification of the family is present- neotropical Costus species can be placed rather easily ed and species lists are given for each of the newly into one of the two sections based on floral and inflores- described genera. Several lineages within Costus having cence characteristics, African and Asian Costus do not unique associations with pollinators are recognized. share this distinction of forms. Subsequent to Schumann (1904) and Loesener (1930), the division of African and Asian Costus into various subgenera has not been main- tained, with the exception of Costus spectabilis as sub- MATERIALS AND METHODS gen. Cadalvena (Lock, 1985). The most recent interfamilial classification for In contrast to the large pantropical Costus, the Costaceae is provided by a combined molecular and remaining genera of Costaceae (Monocostus, Dimero- morphological cladistic analysis that includes a represen- costus and Tapeinochilos) are restricted in distribution. tative sampling of Costaceae taxa (Specht & al., 2001; Dimerocostus and Monocostus are both restricted to the Specht, 2006). A summary of the current evolutionary neotropics, the former extending from Honduras in the hypothesis for Costaceae based on the recent phyloge- north to central Bolivia in the south and the latter known netic analysis is shown in Figure 1. This phylogenetic only from the Río Huallaga region of central Peru. hypothesis forms the basis for the revised taxonomic Monocostus is the only taxon to have a solitary flower in classification system. the axils of the leaves rather than a highly structured The formal generic classification is presented as inflorescence of spirally arranged bracts subtending sin- governed by the current ICBN. In addition, a list of syn- gle or paired flowers. Although differing in overall plant apomorphies is provided for each of the newly described morphology, Monocostus and Dimerocostus share a flo- genera and follows the discussion of the individual ral morphology that is at least superficially similar to that group. of Cadalvena. Tapeinochilos is restricted to the paleo- There was no major discrepancy between the molec- tropics where it is found primarily in New Guinea with a ular and morphological analyses, thus the topology few species extending into the surrounding Indonesian obtained from the combined analysis was selected for the islands and south to Queensland, Australia. Although new classification system. Morphological distinctiveness most closely resembling the Costus sect. Ornithophilus was also considered in the definition of new genera, as in floral form, the floral and inflorescence morphology of was adherence to previously recognized natural lineages. Tapeinochilos is distinct from that of other Costaceae. Major clades with strong support (as determined by Few species of Costus have distributions falling Bremer support, jackknife) and clear morphological syn- within the range of Tapeinochilos, and those that do have apomorphies are named. Within Costus, several clades a floral form of the type found in Cadalvena, Mono- are given informal recognition as having unique mor- costus and Dimerocostus. These Asian Costus species phological characteristics but are not designated formal- share with Tapeinochilos the tendency to undergo vege- ly due to the resulting basal paraphyly. tative branching, and both possess woody inflorescence bracts in contrast to the herbaceous and chartaceous bracts of the African and neotropical taxa. The bracts are often red, but can be dark brown or even black in color. TAXONOMIC TREATMENT Despite these similarities, no specific or formal affilia- Costaceae Nakai in J. Jap. Bot. 17: 203. 1941, tion between Asian species of Costus and Tapeinochilos basionym: trib. Costeae Meisn., Pl. Vasc. Gen.: Tab. had been proposed. Diagn.: 389, Comm.: 291. 17–20 Aug 1842. – Type: Recent phylogenetic analyses
Recommended publications
  • TAXON:Costus Malortieanus H. Wendl. SCORE:7.0 RATING:High Risk
    TAXON: Costus malortieanus H. SCORE: 7.0 RATING: High Risk Wendl. Taxon: Costus malortieanus H. Wendl. Family: Costaceae Common Name(s): spiral flag Synonym(s): Costus elegans Petersen spiral ginger stepladder ginger Assessor: Chuck Chimera Status: Assessor Approved End Date: 2 Aug 2017 WRA Score: 7.0 Designation: H(HPWRA) Rating: High Risk Keywords: Perennial Herb, Ornamental, Shade-Tolerant, Rhizomatous, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y Creation Date: 2 Aug 2017 (Costus malortieanus H.
    [Show full text]
  • Two New Species of Gingers (Zingiberaceae) from Myanmar
    A peer-reviewed open-access journal PhytoKeys 13: 5–14 (2012)Two new species of Gingers (Zingiberaceae) from Myanmar 5 doi: 10.3897/phytokeys.13.2670 RESEARCH ARTICLE www.phytokeys.com Launched to accelerate biodiversity research Two new species of Gingers (Zingiberaceae) from Myanmar Vinita Gowda1, W. John Kress1, Thet Htun2 1 Dept. of Botany, MRC-166, P. O Box 37012, Smithsonian Institution, Washington, D.C. 20013-0712, USA 2 Ministry of Forestry, Department of Forestry, Office No. 28, Nay Pyi Taw, Union of Myanmar Corresponding author: Vinita Gowda ([email protected]) Academic editor: Sandra Knapp | Received 12 January 2012 | Accepted 28 May 2012 | Published 7 June 2012 Citation: Gowda V, Kress WJ, Htun T (2012) Two new species of Gingers (Zingiberaceae) from Myanmar. PhytoKeys 13: 5–14. doi: 10.3897/phytokeys.13.2670 Abstract Two new species of gingers (Zingiberaceae), Globba sherwoodiana W.J. Kress & V. Gowda sp. nov., and Curcuma arracanensis W.J. Kress & V. Gowda sp. nov., from Myanmar are described. The new species of Globba is currently only known in cultivation and is commonly grown and sold in markets in Myanmar. In contrast C. arracanensis has been collected from a single restricted region in the cloud forests of the Rakhine Yoma above the Bay of Bengal in western Myanmar. Three-locus DNA barcodes were generated as aids for the identification of the two new species. Keywords Curcuma, endemic, Globba, Myanmar, new species, taxonomy, Zingiberaceae Introduction A recent surge of interest in the taxonomy and classification of the family Zingib- eraceae (Kress et al. 2002, 2007) as well as significant efforts at field exploration in Southeast Asia have resulted in the discovery and description of a plethora of new spe- cies and genera of gingers (e.g., Kress et al.
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
    Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources.
    [Show full text]
  • The Molecular Phylogeny of Alpinia (Zingiberaceae): a Complex and Polyphyletic Genus of Gingers1
    American Journal of Botany 92(1): 167±178. 2005. THE MOLECULAR PHYLOGENY OF ALPINIA (ZINGIBERACEAE): A COMPLEX AND POLYPHYLETIC GENUS OF GINGERS1 W. J OHN KRESS,2,3,5 AI-ZHONG LIU,2 MARK NEWMAN,4 AND QING-JUN LI3 2Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012 USA; 3Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303 China; and 4Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK Alpinia is the largest, most widespread, and most taxonomically complex genus in the Zingiberaceae with 230 species occurring throughout tropical and subtropical Asia. Species of Alpinia often predominate in the understory of forests, while others are important ornamentals and medicinals. Investigations of the evolutionary relationships of a subset of species of Alpinia using DNA sequence- based methods speci®cally test the monophyly of the genus and the validity of the previous classi®cations. Seventy-two species of Alpinia, 27 non-Alpinia species in the subfamily Alpinioideae, eight species in the subfamily Zingiberoideae, one species in the subfamily Tamijioideae, and three species in the outgroup genus Siphonochilus (Siphonochiloideae) were sequenced for the plastid matK region and the nuclear internal transcribed spacer (ITS) loci. Parsimony analyses of both individual and combined data sets identi®ed six polyphyletic clades containing species of Alpinia distributed across the tribe Alpinieae. These results were supported by a Bayesian analysis of the combined data set. Except in a few speci®c cases, these monophyletic groupings of species do not correspond with either Schumann's (1904) or Smith's (1990) classi®cation of the genus.
    [Show full text]
  • IAPT Chromosome Data 28
    TAXON 67 (6) • December 2018: 1235–1245 Marhold & Kučera (eds.) • IAPT chromosome data 28 IAPT CHROMOSOME DATA IAPT chromosome data 28 Edited by Karol Marhold & Jaromír Kučera DOI https://doi.org/10.12705/676.39 Julio Rubén Daviña & Ana Isabel Honfi* Chromosome numbers counted by L. Delgado and ploidy level estimated by B. Rojas-Andrés and N. López-González; collectors: Programa de Estudios Florísticos y Genética Vegetal, Instituto AA = Antonio Abad, AT = Andreas Tribsch, BR = Blanca Rojas- de Biología Subtropical CONICET-Universidad Nacional de Andrés, DGL = David Gutiérrez Larruscain, DP = Daniel Pinto, JASA Misiones, nodo Posadas, Rivadavia 2370, 3300 Posadas, Argentina = José Ángel Sánchez Agudo, JPG = Julio Peñas de Giles, LMC = * Author for correspondence: [email protected] Luz Mª Muñoz Centeno, MO = M. Montserrat Martínez-Ortega, MS = María Santos Vicente, NLG = Noemí López-González, NPG = This study was supported by Agencia Nacional de Promoción Nélida Padilla-García, SA = Santiago Andrés, SB = Sara Barrios, VL Científica y Técnica (ANPCyT) grant nos. PICT-2014-2218 and PICT- = Víctor Lucía, XG = Ximena Giráldez. 2016-1637, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). This work has been supported by the Spanish Ministerio de Economía y Competitividad (projects CGL2009-07555, CGL2012- All materials CHN; collectors: D = J.R. Daviña, H = A.I. Honfi, 32574, Flora iberica VIII [CGL2008-02982-C03-02/CLI], Flora L = B. Leuenberger. iberica IX [CGL2011-28613-C03-03], Flora iberica X [CGL2014- 52787-C3-2-P]); the Spanish Ministerio de Ciencia e Innovación AMARYLLIDACEAE (Ph.D. grants to BR and NLG), and the University of Salamanca Habranthus barrosianus Hunz.
    [Show full text]
  • For Enumeration of This Part a Linear Sequence of Lycophytes and Ferns After Christenhusz, M
    PTERIDOPHYTA For enumeration of this part A linear sequence of Lycophytes and Ferns after Christenhusz, M. J. M.; Zhang, X.C. & Schneider, H. (2011) has been followed Subclass: Lycopodiidae Beketov (1863). Order: Selaginellales (1874). Selaginellaceae Willkomm, Anleit. Stud. Bot. 2: 163. 1854; Prodr. FI. Hisp. 1(1): 14. 1861. SELAGINELLA P. Beauvois, Megasin Encycl. 9: 478. 1804. Selaginella monospora Spring, Mém. Acad. Roy. Sci. Belgique 24: 135. 1850; Monogr. Lyc. II:135. 1850; Alston, Bull. Fan. Mem. Inst. Biol. Bot. 5: 288, 1954; Alston, Proc. Nat. Inst. Sc. Ind. 11: 228. 1945; Reed, C.F., Ind. Sellaginellarum 160 – 161. 1966; Panigrahi et Dixit, Proc. Nat. Inst. Sc. Ind. 34B (4): 201, f.6. 1968; Kunio Iwatsuki in Hara, Fl. East. Himal. 3: 168. 1972; Ghosh et al., Pter. Fl. East. Ind. 1: 127. 2004. Selaginella gorvalensis Spring, Monogr. Lyc. II: 256. 1850; Bak, Handb. Fern Allies 107. 1887; Selaginella microclada Bak, Jour. Bot. 22: 246. 1884; Selaginella plumose var. monospora (Spring) Bak, Jour. Bot. 21:145. 1883; Selaginella semicordata sensu Burkill, Rec. Bot. Surv. Ind. 10: 228. 1925, non Spring. Plant up to 90 cm, main stem prostrate, rooting on all sides and at intervals, unequally tetragonal, main stem alternately branched 5 – 9 times, branching unequal, flexuous; leavesobscurely green, dimorphus, lateral leaves oblong to ovate-lanceolate, subacute, denticulate to serrulate at base. Spike short, quadrangular, sporophylls dimorphic, large sporophyls less than half as long as lateral leaves, oblong- lanceolate, obtuse, denticulate, small sporophylls dentate, ovate, acuminate. Fertile: October to January. Specimen Cited: Park, Rajib & AP Das 0521, dated 23. 07.
    [Show full text]
  • GALLEY 631 File # 49Ee
    Allen Press • DTPro System GALLEY 631 File # 49ee Name /alis/22_149 12/16/2005 11:34AM Plate # 0-Composite pg 631 # 1 Aliso, 22(1), pp. 631–642 ᭧ 2006, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 GONDWANAN VICARIANCE OR DISPERSAL IN THE TROPICS? THE BIOGEOGRAPHIC HISTORY OF THE TROPICAL MONOCOT FAMILY COSTACEAE (ZINGIBERALES) CHELSEA D. SPECHT1 The New York Botanical Garden, Institute of Plant Systematics, Bronx, New York 10458, USA ([email protected]) ABSTRACT Costaceae are a pantropical family, distinguished from other families within the order Zingiberales by their spiral phyllotaxy and showy labellum comprised of five fused staminodes. While the majority of Costaceae species are found in the neotropics, the pantropical distribution of the family as a whole could be due to a number of historical biogeographic scenarios, including continental-drift mediated vicariance and long-distance dispersal events. Here, the hypothesis of an ancient Gondwanan distri- bution followed by vicariance via continental drift as the leading cause of the current pantropical distribution of Costaceae is tested, using molecular dating of cladogenic events combined with phy- logeny-based biogeographic analyses. Dispersal-Vicariance Analysis (DIVA) is used to determine an- cestral distributions based upon the modern distribution of extant taxa in a phylogenetic context. Diversification ages within Costaceae are estimated using chloroplast DNA data (trnL–F and trnK) analyzed with a local clock procedure. In the absence of fossil evidence, the divergence time between Costaceae and Zingiberaceae, as estimated in an ordinal analysis of Zingiberales, is used as the cali- bration point for converting relative to absolute ages.
    [Show full text]
  • Costus Speciosus: Traditional Uses, Phytochemistry, and Therapeutic Potentials Ali Hafez El‑Far, Hazem M
    Pharmacogn. Rev. PLANT REVIEW A multifaceted peer reviewed journal in the field of Pharmacognosy and Natural Products www.phcogrev.com | www.phcog.net Costus speciosus: Traditional Uses, Phytochemistry, and Therapeutic Potentials Ali Hafez El-Far, Hazem M. Shaheen1, Abdel Wahab Alsenosy, Yasser S. El-Sayed2, Soad K. Al Jaouni3,4, Shaker A. Mousa5 Departments of Biochemistry, 1Pharmacology and 2Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt, 3Department of Hematology/ Pediatric Oncology, Faculty of Medicine, King Abdulaziz University, 4Yousef Abdulatif Jameel scientific chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia, 5Department of Drug Discovery and Drug Development, Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York, USA ABSTRACT Medicinal plants are sources of novel drug discovery targets. Costus speciosus is an important medicinal plant widely used for the treatment of various ailments. The plant has multiple active ingredients and has been found to possess many pharmacological activities such as antioxidant, anticancer, anti‑inflammatory, antidiabetic, hypolipidemic, hepatoprotective, steroidogenic, adaptogenic, and antimicrobial effects. This review gives an account of unique studies on C. speciosus phytochemical, toxicological, and pharmacological studies and traditional uses of C. speciosus based on searching the databases of Google Scholar, PubMed, Science Direct, and Springer Link. The previous studies stated the pharmacological potentials of C. speciosus, but it is still needed for more research efforts concerning molecular basis of its biological activities, especially in vivo models and safety assessment of its different extracts. Key words: Costus speciosus, Islamic traditional medicine, therapeutic potentials COSTUS SPECIOSUS TRADITIONAL USES AND among them being a treatment for pleurisy.
    [Show full text]
  • Title Kitongwe Name of Plants: a Preliminary Listing Author(S)
    Title Kitongwe Name of Plants: A Preliminary Listing Author(s) NISHIDA, Toshisada; UEHARA, Shigeo Citation African Study Monographs (1981), 1: 109-131 Issue Date 1981 URL http://dx.doi.org/10.14989/67977 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 109 KITONGWE NAME OF PLANTS: A PRELIMINARY LISTING Edited by Toshisada NISHIDA and Shigeo UEHARA Departnlent ofAnthropology, Faculty ofScience, University of Tokyo, Tokyo, Japan INTRODUCTION Field workers of Kyoto University Africa Primatological Expedition collected plants in western Tanzania. Experts of Japan International Cooperation Agency working as Game (Wildlife) Research Officers at Kasoje Chimpanzee Research Station (Mahale Mountains Wildlife Research Centre) have concentrated their collecting activities Inainly to the Mahale Mountains. The collection of plants with notes of kitongwe name not only has facilitated the ecological studies on wild chimpanzees (and other wild animals), but also will be of use in analyzing the traditional system of classification of plants among Batongwe, as well as in re­ cording for ever a rapidly-vanishing culture. This is a revised version, though still only preliminary one, of the manuscript entitled "Sitongwe-Latin Dictionary of Plants" edited by T. Nishida on 4 April, 1975. COLLECTION The researchers who have contributed to this work in the collection of the plants are listed below, with the reference number in the East African Herbarium'(Kenya Herbarium), the number of total specimens collected, and the specimen number in each collection. All the plants with known kitongwe nalne collected within the Tongwe (and Bende) territory are listed in this edition. Local emphasis is put on the Mahale Mountains and especially on Kasoje area.
    [Show full text]
  • Do Sympatric Heliconias Attract the Same Species of Hummingbird? Observations on the Pollination Ecology of Heliconia Beckneri and H
    Do Sympatric Heliconias Attract the Same Species of Hummingbird? Observations on the Pollination Ecology of Heliconia beckneri and H. tortuosa at Cloudbridge Nature Reserve Joseph Taylor University of Glasgow The Hummingbird-Heliconia Project The hummingbird family (Trochilidae), endemic to the Neotropics, is remarkable not only for its beauty but also because of its ability to hover over a flower while feeding, its wing movements a blur. These lively birds require frequent, nutritious feeding to sustain their expenditure of energy, and some plants have evolved to attract and feed them in exchange for pollination services. Prominent among such plants are most species in the genus Heliconia (Heliconiaceae), which are medium to large clone-forming herbs with banana-like leaves (Stiles, 1975). The hummingbird-Heliconia interdependence is a good example of co- evolution, and this study is concerned with one aspect of this relationship. Since several species of hummingbird and Heliconia exist at Cloudbridge, a middle-elevation nature reserve in Costa Rica, we wondered whether particular species of Heliconia had evolved an attraction for particular hummingbird species, which might reduce the chances of hybridisation and pollen loss; or whether the plants compete for a variety of hummingbirds. At Cloudbridge, on the Pacific slope of southern Costa Rica’s Talamanca mountain range, Heliconia beckneri , an endangered species (website 1) restricted to this area and thought to be of hybrid origin (Daniels and Stiles, 1979; website 2), and H. tortuosa occur together. Stiles (1979) names the Green Hermit ( Phaethornis guy ) as the primary pollinator of both species and the Violet Sabrewing ( Campylopterus hemileucurus ) as the secondary pollinator of H.
    [Show full text]
  • Pharmacological Evaluation of Chamaecostus Cuspidatus Leaf Extracts for Anxiolytic Activity by Using Open Field Test Dr
    DOI: 10.21276/sjams Scholars Journal of Applied Medical Sciences (SJAMS) ISSN 2320-6691 (Online) Sch. J. App. Med. Sci., 2017; 5(8A):2976-2979 ISSN 2347-954X (Print) ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com Original Research Article Pharmacological Evaluation of Chamaecostus cuspidatus Leaf Extracts for Anxiolytic Activity by Using Open Field Test Dr. Venkata Padmavathi Velisetty1, Dr. Chandrakala2 1 Associate Professor, Department of Pharmacology, Siddhartha Medical College, Vijayawada 2 Associate Professor, Department of Pharmacology, Guntur Medical College, Guntur *Corresponding author Dr. Venkata Padmavathi Velisetty Email: [email protected] Abstract: Treatment for various problems through herbal medicines is a traditional system being practiced for thousands of years. As all can obey the practice due to fewer side effects, considerable research on pharmacognosy, phytochemistry, pharmacology and clinical therapeutics has been carried out tremendously. Based on current research, on anti-anxiety or anxiolytic activity, most of the people in now a day have got feared in the present society due to many circumstances like stress, inferiority, backward in the hype areas in their own field. For this our basic research started with safe herbal extracts by using on rodents as experimental animals which are exposed on open field apparatus for evaluating anxiolytic activity. The current research got a good response as this procedure was very easy and fast for the evaluation. Keywords: herbal medicines, Chamaecostus cuspidatus , stress, inferiority INTRODUCTION brazil (states of bahia&spiritosanto) in India it is known Herbal products are extensively used globally as insulin plant due to its antidiabetic property[3].
    [Show full text]