GALLEY 631 File # 49Ee
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IAPT Chromosome Data 28
TAXON 67 (6) • December 2018: 1235–1245 Marhold & Kučera (eds.) • IAPT chromosome data 28 IAPT CHROMOSOME DATA IAPT chromosome data 28 Edited by Karol Marhold & Jaromír Kučera DOI https://doi.org/10.12705/676.39 Julio Rubén Daviña & Ana Isabel Honfi* Chromosome numbers counted by L. Delgado and ploidy level estimated by B. Rojas-Andrés and N. López-González; collectors: Programa de Estudios Florísticos y Genética Vegetal, Instituto AA = Antonio Abad, AT = Andreas Tribsch, BR = Blanca Rojas- de Biología Subtropical CONICET-Universidad Nacional de Andrés, DGL = David Gutiérrez Larruscain, DP = Daniel Pinto, JASA Misiones, nodo Posadas, Rivadavia 2370, 3300 Posadas, Argentina = José Ángel Sánchez Agudo, JPG = Julio Peñas de Giles, LMC = * Author for correspondence: [email protected] Luz Mª Muñoz Centeno, MO = M. Montserrat Martínez-Ortega, MS = María Santos Vicente, NLG = Noemí López-González, NPG = This study was supported by Agencia Nacional de Promoción Nélida Padilla-García, SA = Santiago Andrés, SB = Sara Barrios, VL Científica y Técnica (ANPCyT) grant nos. PICT-2014-2218 and PICT- = Víctor Lucía, XG = Ximena Giráldez. 2016-1637, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). This work has been supported by the Spanish Ministerio de Economía y Competitividad (projects CGL2009-07555, CGL2012- All materials CHN; collectors: D = J.R. Daviña, H = A.I. Honfi, 32574, Flora iberica VIII [CGL2008-02982-C03-02/CLI], Flora L = B. Leuenberger. iberica IX [CGL2011-28613-C03-03], Flora iberica X [CGL2014- 52787-C3-2-P]); the Spanish Ministerio de Ciencia e Innovación AMARYLLIDACEAE (Ph.D. grants to BR and NLG), and the University of Salamanca Habranthus barrosianus Hunz. -
Pharmacological Evaluation of Chamaecostus Cuspidatus Leaf Extracts for Anxiolytic Activity by Using Open Field Test Dr
DOI: 10.21276/sjams Scholars Journal of Applied Medical Sciences (SJAMS) ISSN 2320-6691 (Online) Sch. J. App. Med. Sci., 2017; 5(8A):2976-2979 ISSN 2347-954X (Print) ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com Original Research Article Pharmacological Evaluation of Chamaecostus cuspidatus Leaf Extracts for Anxiolytic Activity by Using Open Field Test Dr. Venkata Padmavathi Velisetty1, Dr. Chandrakala2 1 Associate Professor, Department of Pharmacology, Siddhartha Medical College, Vijayawada 2 Associate Professor, Department of Pharmacology, Guntur Medical College, Guntur *Corresponding author Dr. Venkata Padmavathi Velisetty Email: [email protected] Abstract: Treatment for various problems through herbal medicines is a traditional system being practiced for thousands of years. As all can obey the practice due to fewer side effects, considerable research on pharmacognosy, phytochemistry, pharmacology and clinical therapeutics has been carried out tremendously. Based on current research, on anti-anxiety or anxiolytic activity, most of the people in now a day have got feared in the present society due to many circumstances like stress, inferiority, backward in the hype areas in their own field. For this our basic research started with safe herbal extracts by using on rodents as experimental animals which are exposed on open field apparatus for evaluating anxiolytic activity. The current research got a good response as this procedure was very easy and fast for the evaluation. Keywords: herbal medicines, Chamaecostus cuspidatus , stress, inferiority INTRODUCTION brazil (states of bahia&spiritosanto) in India it is known Herbal products are extensively used globally as insulin plant due to its antidiabetic property[3]. -
Tapeinochilos Ananassae (Hassk.) K.Schum
Australian Tropical Rainforest Plants - Online edition Tapeinochilos ananassae (Hassk.) K.Schum. Family: Costaceae Schumann, K.M. (1899) Botanische Jahrbucher 27 : 349. Common name: Torch Ginger; Ginger, Torch; Backscratcher Ginger; Devil's Pineapple; Ginger, Backscratcher Stem Essentially herbaceous with an underground rhizome but leafy shoots at times attaining a height of 2-4 m, usually curled to some extent at the apex of the branches. Leaves Leaves variable in size but commonly about 15 x 5 cm. Lateral veins diverge from the midrib at a very low angle and run parallel to one another. Petiole forms a glabrous, longitudinally veined sheath about 2-4 cm long, completely enclosing the stem. Petiolar sheath with a truncate ligule (about 0.2- 0.3 cm long) at the apex. Flowers Inflorescence usually terminating leafless shoots, cone-like, about 7-20 cm long, consisting mainly Cone-like inflorescence and of stiff bright red bracts which are recurved towards the apex. Flowers barely exceed the bracts. flowers. © CSIRO Calyx lobes unequal, two large + one small. Back of the anther clothed in short, appressed, straight hairs. Stigma expanded, +/- 2-lobed, many times wider than the style. Fruit Infructescence stalked, +/- cone-like, about 15-20 cm long consisting mainly of large bracts about 4.5 x 3.2 cm, bracts red but eventually turning brown. Each fruitlet about 30-35 mm long with three lobes at the apex. Each lobe about 7-8 x 6-8 mm. Seeds seated on a fleshy white mass. Aril translucent. Embryo +/- cylindrical. Seedlings Cotyledon or first leaf almost orbicular, about 1.2-1.6 mm diam., seed coat remaining attached at the apex. -
Rich Zingiberales
RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: The Tree of Death: The Role of Fossils in Resolving the Overall Pattern of Plant Phylogeny Building the monocot tree of death: Progress and challenges emerging from the macrofossil- rich Zingiberales Selena Y. Smith1,2,4,6 , William J. D. Iles1,3 , John C. Benedict1,4, and Chelsea D. Specht5 Manuscript received 1 November 2017; revision accepted 2 May PREMISE OF THE STUDY: Inclusion of fossils in phylogenetic analyses is necessary in order 2018. to construct a comprehensive “tree of death” and elucidate evolutionary history of taxa; 1 Department of Earth & Environmental Sciences, University of however, such incorporation of fossils in phylogenetic reconstruction is dependent on the Michigan, Ann Arbor, MI 48109, USA availability and interpretation of extensive morphological data. Here, the Zingiberales, whose 2 Museum of Paleontology, University of Michigan, Ann Arbor, familial relationships have been difficult to resolve with high support, are used as a case study MI 48109, USA to illustrate the importance of including fossil taxa in systematic studies. 3 Department of Integrative Biology and the University and Jepson Herbaria, University of California, Berkeley, CA 94720, USA METHODS: Eight fossil taxa and 43 extant Zingiberales were coded for 39 morphological seed 4 Program in the Environment, University of Michigan, Ann characters, and these data were concatenated with previously published molecular sequence Arbor, MI 48109, USA data for analysis in the program MrBayes. 5 School of Integrative Plant Sciences, Section of Plant Biology and the Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA KEY RESULTS: Ensete oregonense is confirmed to be part of Musaceae, and the other 6 Author for correspondence (e-mail: [email protected]) seven fossils group with Zingiberaceae. -
(Baker) Ridl. (Zingiberaceae) in Peninsular Malaysia
Gardens’Taxonomic BulletinRevision ofSingapore Geostachys 59 in (1&2):Peninsular 129-138. Malaysia 2007 129 Materials for a Taxonomic Revision of Geostachys (Baker) Ridl. (Zingiberaceae) in Peninsular Malaysia 1 2 3 K.H. LAU , C.K. LIM AND K. MAT-SALLEH 1 Tropical Forest Biodiversity Centre, Biodiversity and Environment Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia. 2 215 Macalister Road, 10450 Penang, Malaysia. 3 School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. Abstract Materials for a taxonomic revision of the Geostachys (Baker) Ridl. in Peninsular Malaysia, resulting from recent fieldwork are presented, with notes on the threat assessment of extant species. Twelve of the 13 previously known species were studied in situ, and two newly described species have also been found (Geostachys belumensis C.K. Lim & K.H. Lau and G. erectifrons K.H. Lau, C.K. Lim & K. Mat-Salleh), bringing the current total to 15 taxa, all highland species, found in hill, sub-montane and upper montane forests ranging from 600 m to 2000 m a.s.l. Thirteen out of 15 of the known species are believed to be hyper-endemic, found so far only in their respective type localities. Introduction Geostachys (Baker) Ridl. is a relatively small genus within the Zingiberaceae family, with only 21 species previously recorded. Its distribution ranges from Vietnam, Thailand, Sumatera, Peninsular Malaysia and Borneo. Peninsular Malaysia is the home for most of the species, with 15 taxa scattered in the rain forest of this country (Holttum, 1950; Stone, 1980; Lau et al., 2005). -
Building the Monocot Tree of Death
Received Date: Revised Date: Accepted Date: Article Type: Special Issue Article RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: The Tree of Death: The Role of Fossils in Resolving the Overall Pattern of Plant Phylogeny Short Title: Building the monocot tree of death Building the monocot tree of death: progress and challenges emerging from the macrofossil-rich Zingiberales 1,2,4,6 1,3 1,4 5 Selena Y. Smith , William J. D. Iles , John C. Benedict , and Chelsea D. Specht Manuscript received 1 November 2017; revision accepted 2 May 2018. 1 Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 USA 2 Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109 USA 3 Department of Integrative Biology and the University and Jepson Herbaria, University of California, Berkeley, CA 94720 USA 4 Program in the Environment, University of Michigan, Ann Arbor, MI 48109 USA 5 School of Integrative Plant Sciences, Section of Plant Biology and the Bailey Hortorium, Cornell University, Ithaca, NY 14853 USA 6 Author for correspondence (e-mail: [email protected]); ORCID id 0000-0002-5923-0404 Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ajb2.1123 This article is protected by copyright. All rights reserved Smith et al.–Building the monocot tree of death Citation: Smith, S. Y., W. J. D. -
The Evolutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales
Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 49 2006 The volutE ionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales W. John Kress Smithsonian Institution Chelsea D. Specht Smithsonian Institution; University of California, Berkeley Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Kress, W. John and Specht, Chelsea D. (2006) "The vE olutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 49. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/49 Zingiberales MONOCOTS Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 621-632 © 2006, Rancho Santa Ana Botanic Garden THE EVOLUTIONARY AND BIOGEOGRAPHIC ORIGIN AND DIVERSIFICATION OF THE TROPICAL MONOCOT ORDER ZINGIBERALES W. JOHN KRESS 1 AND CHELSEA D. SPECHT2 Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012, USA 1Corresponding author ([email protected]) ABSTRACT Zingiberales are a primarily tropical lineage of monocots. The current pantropical distribution of the order suggests an historical Gondwanan distribution, however the evolutionary history of the group has never been analyzed in a temporal context to test if the order is old enough to attribute its current distribution to vicariance mediated by the break-up of the supercontinent. Based on a phylogeny derived from morphological and molecular characters, we develop a hypothesis for the spatial and temporal evolution of Zingiberales using Dispersal-Vicariance Analysis (DIVA) combined with a local molecular clock technique that enables the simultaneous analysis of multiple gene loci with multiple calibration points. -
Materials Towards a Revision of Aulotandra Gagnep. (Zingiberaceae)
Gardens’Materials Towards Bulletin a Revision Singapore of Aulotandra 59 (1&2): 139-144. 2007 139 Materials Towards a Revision of Aulotandra Gagnep. (Zingiberaceae) M.F. NEWMAN Royal Botanic Garden, 20A Inverleith Row Edinburgh EH3 5LR, Scotland, UK Abstract Aulotandra Gagnep. has recently been transferred from the subfamily Alpinioideae, tribe Alpinieae, to the subfamily Siphonochiloideae. Materials towards a revision of Aulotandra and Siphonochilus J.M.Wood & Franks are presented. Introduction Harris et al. (2006) have included Aulotandra Gagnep. in a phylogenetic analysis in order to determine its correct place in the new classification of Zingiberaceae by Kress et al. (2002). Aulotandra was, until recently, the only African genus of Zingiberaceae which had not been included in a molecular systematic study. Two molecular datasets, chloroplast and nuclear, placed Aulotandra closest to Siphonochilus J.M. Wood & Franks, showing that genetic divergence levels were smaller between accessions of Aulotandra and Siphonochilus than between Aulotandra and any other taxon included in the analysis. In addition, phylogenetic analyses of the two data matrices showed that the species of Aulotandra and Siphonochilus sampled in that study formed a monophyletic group. It was clear from the shared synapomorphies and the high branch support for the clade containing these genera that this relationship was very close. The two data sets showed some discrepancy as to the relationships between these two genera - the ITS analysis indicating that Aulotandra was monophyletic, but the trnL-F results suggesting that the two genera were paraphyletic. Accepting that Aulotandra and Siphonochilus form a monophyletic group led to the transfer of Aulotandra from subfamily Alpinioideae, tribe Alpinieae, to subfamily Siphonochiloideae. -
Costus Species in the Upper Manú Region
Costus species in the Upper Manú Region Prepared by David L. Skinner, Email: [email protected] January 12, 2013 This is a description of the Costus species that are known to occur in Amazonian Peru, and possibly to be found in the upper Manú region. In 1972 and 1977 Dr. Paul Maas published a monograph on new world Costus in the New York Botanical Garden Flora Neotropica series. The species descriptions below are taken primarily from his monograph and from three new species descriptions in 1990, but also from my own observations from many field trips in Central and South America looking for Costus. For example, I have found that many Costus species can flower either as a basal inflorescence on a leafless or nearly leafless shoot, or terminally on leafy shoot, so I have dismissed this as a determinative character. I have also found many plants that do not fit well with any named species, and found that the range and diversity of some species is much wider than previously reported. Costus can be classified for identification purposes into four main groupings: Group I: Bracts with foliacious green or red appendages or reflexed appices and flowers closed/tubular. Group II: Bracts with foliacious green or red appendages or reflexed appices and flowers open/spreading. Group III: Bracts not appendaged (or only lowest bracts appendaged) and flowers closed/tubular. Group IV: Bracts not appendaged (or only lowest bracts appendaged) and flowers open/spreading. ---------------------------------------------------------------------------------------------------------------------------- Costus vargasii - Group I This species is widely cultivated, sometimes sold in US horticulture under the name Costus 'Raspberry Yogurt'. -
Acclimatization of Tapeinochilos Ananassae Plantlets in Association
Acclimatization of Tapeinochilos ananassae plantlets in association with arbuscular mycorrhizal fungi João Ricardo Gonçalves de Oliveira(1), Thiago Alberto de Lima Morais(2), Natoniel Franklin de Melo(3) and Adriana Mayumi Yano‑Melo(4) (1)Universidade Federal de Pernambuco, Centro de Ciências Biológicas, Departamento de Micologia, Rua Nelson Chaves, s/no, CEP 50670‑420 Recife, PE, Brazil. E‑mail: [email protected] (2)Companhia Vale do Rio Doce, Avenida Vicinal Picadão, Km 22, CEP 68390‑000 Ourilândia do Norte, PA, Brazil. E‑mail: [email protected] (3)Embrapa Semiárido, Caixa Postal 23, CEP 56304‑970 Petrolina, PE, Brazil. E‑mail: [email protected] (4)Universidade Federal do Vale do São Francisco, Avenida José de Sá Maniçoba, s/no, Centro, CEP 56304‑917 Petrolina, PE, Brazil. E‑mail: [email protected] Abstract – The objective of this work was to assess the potential of three isolates of arbuscular mycorrhizal fungi to promote growth of micropropagated plantlets of Tapeinochilos ananassae during acclimatization. The experiment was carried out in greenhouse, in a completely randomized block design, with four inoculation treatments: non-inoculated control and plants inoculated with Glomus etunicatum, Acaulospora longula or Gigaspora albida, with ten replicates. After 90 days, the following parameters were evaluated: survival rate, height, leaf and tiller number, leaf area, fresh and dry biomass, contents of macro- and micronutrients in the root and shoot, glomerospore number, and mycorrhizal colonization. The survival percentage was 100%, except for plants inoculated with G. albida (80%). The isolate G. etunicatum is more suitable for plant development, since it improves survival, growth, dry matter production, nutritional status, and vigor of T. -
Saponins from the Rhizomes of Chamaecostus Subsessilis and Their Cytotoxic Activity Against HL60 Human Promyelocytic Leukemia Ce
© 2020 Journal of Pharmacy & Pharmacognosy Research, 8 (5), 466-474, 2020 ISSN 0719-4250 http://jppres.com/jppres Original Article | Artículo Original Saponins from the rhizomes of Chamaecostus subsessilis and their cytotoxic activity against HL60 human promyelocytic leukemia cells [Saponinas de los rizomas de Chamaecostus subsessilis y su actividad citotóxica contra las células de leucemia promielocítica humana HL60] Ezequias Pessoa de Siqueira1, Ana Carolina Soares Braga1, Fernando Galligani2, Elaine Maria de Souza-Fagundes2, Betania Barros Cota1* 1Laboratory of Chemistry of Bioactive Natural Products, Rene Rachou Institute, Oswaldo Cruz Fundation, Belo Horizonte, 30.190-009, Brazil. 2Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270901, Brazil. *E-mail: [email protected] Abstract Resumen Context: Species of the Costaceae family have been traditionally used for Contexto: Las especies de la familia Costaceae se han utilizado the treatment of infections, tumors and inflammatory diseases. tradicionalmente para el tratamiento de infecciones, tumores y Chamaecostus subsessilis (Nees & Mart.) C. D. Specht & D.W. Stev. enfermedades inflamatorias. Chamaecostus subsessilis (Nees y Mart.) C. D. (Costaceae) is a native medicinal plant with distribution in the Cerrado Specht y D.W. Stev. (Costaceae) es una planta medicinal nativa con forest ecosystem of Central Brazil. In our previous work, the antitumor distribución en el ecosistema forestal Cerrado del centro de Brasil. En potential of the chloroform fraction (CHCl3 Fr) from rhizomes ethanol nuestro trabajo anterior, el potencial antitumoral de la fracción de extract (REEX) of C. subsessilis was determined against a series of tumor cloroformo (CHCl3 Fr) del extracto de etanol de rizomas (REEX) de C. -
Response of the Endangered Medicinal Plant Siphonochilus Aethiopicus (Schweif.) B.L. Burt. to Agronomic Practices
Response of the Endangered Medicinal Plant Siphonochilus aethiopicus (Schweif.) B.L. Burt. to Agronomic Practices by James Francis Hartzell Submitted in fulfillment of the academic requirements of Master of Science in Plant Pathology School of Agricultural Sciences and Agribusiness Faculty of Science and Agriculture University of KwaZulu-Natal Pietermaritzburg, KwaZulu-Natal, South Africa December 14, 2011 i Response of the Endangered Medicinal Plant Siphonochilus aethiopicus (Schweif.) B.L. Burt. to Agronomic Practices Thesis Abstract This study examines field cropping constraints for domestication of an endangered, wild medicinal plant, Siphonochilus aethiopicus, (Schweif.) B.L. Burt. Extensive literature review and careful observations of plant growth behavior during two years of crop trials overturned several long-held but erroneous claims that have consistently appeared in the scholarly literature, and revealed previously undocumented plant growth characteristics. S. aethiopicus (Schweif.) B.L. Burt. is a rhizomatous corm, not a rhizome. Field growth observations demonstrated clearly that the false stem and leaves grow continuously from emergence in September to senescence in April-May; the corm retains its tuberous roots during winter senescence, and is genetically preprogrammed to shoot in September. Flowers may emerge throughout the growing season (not only initially prior to shoot emergence), typical leaf count is 11-15, not 6-8 as previously reported, numbers that remain constant even when the plant height increases by 20- 30% under shade, and leaf distichy is independent of the sun’s course and is unaffected by mother corm orientation. S. aethiopicus proved to be unusually resistant to common field diseases and pests, and resilient to severe hail.