Sugar Technology Beet and Cane Sugar Manufacture
Total Page:16
File Type:pdf, Size:1020Kb
P. W. van der Pod, H. Schiweck, T. Schwartz Sugar Technology Beet and Cane Sugar Manufacture Published with support of the Beet Sugar Development Foundation, Denver, USA Bibliothek Fachbereich Chemie Technische Universitat Darmstadt L Verlag Dr. Albert Bartens KG - Berlin 1998 Contents 11 Contents Foreword 5 1.1.5.6 Intense sweeteners 51 1.1.5.7 Synergistic effects of blends 52 Preface 7 1.1.6 Total sweetener consumption and outlook 52 About the Editors 9 1.2 Sugar - Ingredient for the household and the food industry 53 List of symbols 25 1.2.1 Emotional and psychological relationships 53 List of subscripts 29 1.2.2 Sugar and nutrition 53 1.2.3 Health aspects of sugar . 55 Contributors 32 1.2.4 Theory of sweetness 57 1.2.5 Sensory properties, molecular structure and relative sweetness 58 1 Sugar 37 1.2.6 Sugar in the sweetener market 60 1.2.6.1 Functional properties 60 1.1 Historical overview of sweeteners 37 1.2.6.2 Competitive sweeteners 60 1.1.1 Honey and fruit juice concentrates 37 1.3 Sugar - raw material for the 1.1.2 Sugar crops 38 chemical and fermentation industry 63 1.1.2.1 Sugarcane 38 1.3.1 Oxidation 63 1.1.2.2 Sugar palm, sweet corn, sugar 1.3.2 Hydrogenation/reductive amination 65 maple 40 1.3.3 HMF production 67 1.1.2.3 Sugarbeet 40 1.3.4 Sucrose-based esters 67 1.1.3 Sugar production 41 1.3.5 Polyurethane 68 1.1.3.1 Preindustrial cane sugar production 41 1.3.6 Fermentation 68 1.1.3.2 Early beet sugar production 42 1.3.7 Separation of invert sugar into 1.1.3.3 Changes in sugar production and glucose and fructose 69 trade in the 19th century 42 1.3.8 Sugar as a timber preservative 69 1.1.3.4 Advances in sugar technology 43 1.4 Physicochemical properties of 1.1.4 Sugar in the world economy 45 sucrose 70 1.1.4.1 Development of the sugar industry 1.4.1 Chemical structure and in the 20th century 45 conformation 70 1.1.4.2 Changes in sugar consumption 46 1.4.2 States of matter of sucrose 70 1.1.4.3 Importance of by-products 47 1.4.2.1 Crystalline phase 70 1.1.4.4 Sugar as a renewable resource: 1.4.2.2 Amorphous sugar 71 Sugar in the chemical industry 48 1.4.3 Properties of crystalline sucrose 72 1.1.5 Other sweeteners 48 1.4.4 Properties of granulated sugar 1.1.5.1 Starch sugars 48 in bulk form 74 1.1.5.2 Fructose 49 1.4.5 Properties of sucrose solutions 75 1.1.5.3 Lactose, lactose hydrolysates , 50 1.4.5.1 Theory of sucrose in solution 75 1.1.5.4 Sugar alcohols (polyols) 50 1.4.5.2 Structurally determined properties 76 1.1.5.5 Diabetic sweeteners 51 1.4.5.3 Optical and magnetic properties 81 12 Contents 1.4.5.4 Thermodynamic properties of 2.1.3.2.3 Hemicelluloses 122 sucrose solutions 83 2.1.3.2.4 Lignin 123 1.5 Quality criteria of white sugar 2.1.4 Composition of cell juice 123 \ and its commercial grades 84 2.1.4.1 Nitrogen-free compounds 123 1.5H Limiting values in international 2.1.4.1.1 Monosaccharides 123 j'j standards 84 2.1.4.1.2 Oligosaccharides 126 1.5(.1.1 Codex Alimentarius 84 2.1.4.1.3 Pblysaccharides 128 1.5.1.2 EU sugar standards 86 2.1.4.1.4 Organic and inorganic anions 129 1.5.1.3 Standards of the EU sugar 2.1.4.1.5 Inorganic cations and ash 133 market regime 87 2.1.4.1.6 Saponins 135 1.5.1.4 US Food Chemical Codex 88 2.1.4.1.7 Lipids 137 1.5.1.5 Other standards and guidelines 89 2.1.4.1.8 Odor substances 137 1.5.2 Individual criteria in 2.1.4.2 Nitrogenous compounds 138 international standards 90 2.1.4.2.1 Overview 138 1.5.2.1 Sucrose 90 2.1.4.2.2 Amino acids and amides 140 1.5.2.2 Invert sugar 90 2.1.4.2.3 Proteinaceous substances 144 1.5.2.3 Ash and conductivity 91 2.1.4.2.4 Plant bases and lecithin 146 1.5.2.4 Water 91 2.1.4.2.5 Nucleic acids, pyrimidine and 1.5.2.5 Color and turbidity of the solution 93 purine bases, allantoin 148 1.5.2.6 Visual appearance (color type) 95 2.1.4.2.6 Phenolic compounds 150 1.5.2.7 Sulfur dioxide 95 2.1.4.2.7 Vitamins 151 1.5.2.8 Contaminants 96 2.2 Composition of sugarcane 151 1.5.2.9 Raffinose and theanderose in 2.2.1 Composition of sugarcane fiber white sugar 97 and bagasse 151 1.5.3 International Pharmacopoeia 97 2.2.2 Composition of sugarcane juice 152 1.5.3.1 European Pharmacopoeia 97 2.3 Reactions of beet cell-wall 1.5.3.2 United States Pharmacopoeia 98 constituents 157 1.5.4 Specific criteria 98 2.3.1 During storage 157 1.5.4.1 Microbiological criteria and 2.3.2 During extraction 158 standards 98 2.3.3 During ensiling of pressed pulp 161 1.5.4.2 Physical and chemical criteria 98 2.3.4 Chemical reaction of fine pulp 1.5.4.3 Crystal properties 104 in juice purification 162 2.4 Reactions of juice constituents 163 2.4.1 Saccharides 163 2 Composition of sugarbeet and 2.4.1.1 Sucrose 163 sugarcane and chemical behavior 2.4.1.2 Enzymatic and microbial reactions of constituents in processing 115 related to sucrose 167 2.4.1.3 Glucose, fructose (invert sugar) 2.1 Composition of sugarbeet 115 degradation 170 2.1.1 Overview 115 2.4.1.4 Further saccharides 177 2.1.2 Relative distribution of beet 2.4.2 Nonsugars 179 constituents 115 2.4.2.1 Organic N-free acids 179 2.1.3 Composition of the cell wall 117 2.4.2.2 Amino acids 181 2.1.3.1 Marc, marc hydrate, and juice 2.4.2.3 Glutamine degradation 183 content 117 2.4.2.4 Other nitrogenous substances 185 2.1.3.2 Composition of the marc and 2.4.2.5 Phenolic compounds 186 properties of marc components 118 2.4.2.6 Other constituents 186 2.1.3.2.1 Cellulose 118 2.4.2.7 Protein, nucleic acids and 2.1.3.2.2 Pectic substances 119 nucleic building blocks 187 Contents 13 2.4.2.8 Inorganic anions 188 4.2.1 Implementing a mechanized 2.4.2.9 Inorganic cations 189 harvesting system 245 2.4.3 Color formation 189 4.2.3 Fully mechanized whole-stick 2.4.3.1 Melanin formation 189 harvesting systems 245 2.4.3.2 Melanoidin formation 4.2.4 Chopper harvesting systems 246 (Maillard reaction) 192 4.2.5 Choice between chopper and 2.4.3.3 Caramelization 197 whole-stick harvester 246 2.4.3.4 Strecker degradation 199 4.3 Cane loading 246 2.4.3.5 Inhibitors 200 4.4 Cane transport 248 4.4.1 Soil compaction 249 3 Quality of sugarbeet and sugarcane 209 Reception, storage and washing 251 3.1 Morphology and physical 5.1 Determination of beet payment properties of sugarbeet 209 parameters 251 3.1.1 Morphology 209 5.1.1 Weighing and sampling 251 3.1.2 Ultrastructure of the native 5.1.1.1 Weighing 251 sugarbeet root 211 5.1.1.2 Sampling 253 3.1.3 Physical properties of beet 212 5.1.1.3 Top and soil tare determination 253 3.1.4 Physical data of sugarbeet piles 214 5.1.2 Analysis 254 3.1.5 Physical properties of beet 5.1.2.1 Brei preparation 254 after denaturation 215 5.1.2.2 Digestion and clarification 255 3.2 Formulas to calculate sugar losses 5.1.2.3 Sucrose by polarimetry 256 in molasses, nonsugar content in 5.1.2.4 Alternative sucrose determination thick juice and resulting pH value methods 256 (alkalinity) of thick juice from 5.1.2.5 Determination of nonsugars 257 beet analysis 216 5.1.2.6 Reproducibility of analyses in 3.3 Structure, propagation and automatic beet laboratories 259 physiology of the sugarcane plant 225 5.2 Determination of cane payment 3.3.1 External structure of the parameters 260 sugarcane plant 225 5.2.1 Sampling 260 3.3.2 Vegetative propagation 228 5.2.1.1 Core sampling 260 3.4 Sugarcane quality evaluation 230 5.2.1.2 Grab sampling 260 5.2.1.3 Full width hatch sampler 261 5.2.1.4 Comparison of core, grab, 4 Beet and cane harvesting 239 and hatch samplers 261 5.2.1.5 First expressed juice 263 4.1 Sugarbeet harvesting 239 5.2.1.6 Sampling of mixed juice and 4.1.1 Harvesting operations 239 final bagasse 263 4.1.2 Topping and lifting quality 240 5.2.2 Determination of sucrose content 4.1.3 Area capacity of harvesting (single polarization) 264 systems 241 5.2.2.1 Wet desintegrator method 264 4.1.4 Harvesting and utilization of 5.2.2.2 Hydraulic press method 264 leaves and tops 242 5.2.2.3" Analysis of first expressed juice 265 4.1.5 Soil content 242 5.2.2.4 Analysis of mixed juice and final 4.1.6 Beet storage in field clamps 243 bagasse 266 4.1.7 Transport to the factory 244 5.3 Beet unloading 266 4.2 Cane harvesting 245 5.4 Sugarbeet storage 267 14 Contents 5.4.1 Chemical and biochemical 5.5.6.1 Recovery of beet particulate reactions during storage 268 matter 301 5.4.1.1 Biochemical reactions of 5.5.6.2 Recovery of vegetable matter 302 ^ respiration 268 5.5.7 Processing and disposal of 5.4.1.2 Microbiology of beet in storage 269 beet soil 303 5.412 Factors affecting the technological 5.5.7.1 Spreading by spraying 303 ! value of beet during storage 270 5.5.7.2 Dewatering of beet soil 303 5.4.2.1 Temperature 270 5.5.7.3 Composition of beet soil 303 5.4.2.2 CO2 and O2 contents of the 5.5.7.4 Possible utilization 305 surrounding air 271 5.4.2.3 Relative humidity 272 5.4.2.4 Beet quality after harvesting 272 6 Extraction 309 5.4.3 Changes in the chemical composition of beet 275 6.1 Extraction theory 309 5.4.3.1 Sugar losses 275 6.1.1 Introduction 310 5.4.3.2 Soluble carbohydrates 276 6.1.2 Simplified model of 5.4.3.3 Soluble non-carbohydrates 278 countercurrent extraction 311 5.4.3.4 Insoluble substances, marc 279 6.1.2.1 Effect of cossette geometry 312 5.4.4 Physical changes of beet in 6.1.2.2 Balance calculations 313 storage 279 6.1.2.3 Separation stages and 5.4.5 Storage conditions for minimal transfer units 314 sugar losses by respiration 280 6.1.2.4 Silin formula 315 5.4.6 Beet storage methods and 6.1.2.5 Effect of axial dispersion 315 conditions 281 6.1.2.6 Radial dispersion 318 5.4.6.1 Short-term storage at the factory 282 6.1.3 Nature of the material transport 5.4.6.2 Clamp storage (Europe) 282 within the cossette 318 5.4.6.3 Long-term