Revisiting the Roles of Heat Shock Factor 4 in Health and Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Revisiting the Roles of Heat Shock Factor 4 in Health and Diseases biomolecules Review More Than Meets the Eye: Revisiting the Roles of Heat Shock Factor 4 in Health and Diseases Saiful Effendi Syafruddin *,† , Sheen Ling † , Teck Yew Low and M Aiman Mohtar UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; [email protected] (S.L.); [email protected] (T.Y.L.); [email protected] (M.A.M.) * Correspondence: [email protected]; Tel.: +60-39145-9040 † These authors contributed equally to this work. Abstract: Cells encounter a myriad of endogenous and exogenous stresses that could perturb cellular physiological processes. Therefore, cells are equipped with several adaptive and stress-response machinery to overcome and survive these insults. One such machinery is the heat shock response (HSR) program that is governed by the heat shock factors (HSFs) family in response towards elevated temperature, free radicals, oxidants, and heavy metals. HSF4 is a member of this HSFs family that could exist in two predominant isoforms, either the transcriptional repressor HSFa or transcriptional activator HSF4b. HSF4 is constitutively active due to the lack of oligomerization negative regulator domain. HSF4 has been demonstrated to play roles in several physiological processes and not only limited to regulating the classical heat shock- or stress-responsive transcriptional programs. In this review, we will revisit and delineate the recent updates on HSF4 molecular properties. We also comprehensively discuss the roles of HSF4 in health and diseases, particularly in lens cell development, cataract formation, and cancer pathogenesis. Finally, we will posit the potential Citation: Syafruddin, S.E.; Ling, S.; direction of HSF4 future research that could enhance our knowledge on HSF4 molecular networks as Low, T.Y.; Mohtar, MA. More Than well as physiological and pathophysiological functions. Meets the Eye: Revisiting the Roles of Heat Shock Factor 4 in Health and Keywords: heat shock factors; cellular stress; cells development; transcription regulation; cataract; cancer Diseases. Biomolecules 2021, 11, 523. https://doi.org/10.3390/ biom11040523 1. Introduction Academic Editor: Jürg Bähler Cells are constantly being exposed to various forms of cellular stresses and external insults. Therefore, it is vital for them to mount appropriate responses and adapt to these Received: 8 March 2021 stresses in order to maintain proper cellular homeostasis and functions [1]. One of these Accepted: 29 March 2021 Published: 31 March 2021 responses include the activation of stress-associated responsive programs such as the heat shock response (HSR) [2], DNA damage response (DDR) [3], unfolded protein response (UPR) [4], hypoxic stress response [5], and oxidative stress response [6]. Since cells are de- Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in pendent on adaptive response machinery to cope with these insults, dysregulations in any published maps and institutional affil- of these stress-associated responsive programs have been implicated in many diseases such iations. as cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, and can- cer [7,8]. The heat shock response program, in particular, plays a critical role in facilitating cell adaptation and survival in elevated temperature environments and in other stressful conditions. The cellular heat shock response program is tightly governed by a family of transcription factors known as the heat shock factors (HSFs). This review focuses solely Copyright: © 2021 by the authors. on heat shock factor 4 (HSF4), and we discuss the current understanding of the molecular Licensee MDPI, Basel, Switzerland. This article is an open access article properties and roles of HSF4 in health and diseases. Finally, we provide insights on the distributed under the terms and potential future HSF4 research direction to enhance our knowledge on HSF4 in general conditions of the Creative Commons and its functional relevance in both physiological and pathophysiological processes. Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Biomolecules 2021, 11, 523. https://doi.org/10.3390/biom11040523 https://www.mdpi.com/journal/biomolecules BiomoleculesBiomolecules 2021 2021, 11, 11, x, x 2 2of of 18 18 Biomolecules 2021, 11, 523 2 of 18 2.2. Overview Overview of of the the Heat Heat Shock Shock Response Response (HSR) (HSR) 2. Overview of the Heat Shock Response (HSR) TheThe HSR HSR was was initially initially characterized characterized as as a a cellular cellular program program activated activated in in response response to to an an The HSR was initially characterized as a cellular program activated in response to increaseincrease in in temperature. temperature. It It was was later later discover discovereded that, that, in in addition addition to to elevated elevated temperatures, temperatures, an increase in temperature. It was later discovered that, in addition to elevated tempera- otherother stimuli stimuli such such as as free free radicals, radicals, oxidants, oxidants, and and heavy heavy metals metals are are able able to to trigger trigger the the HSR HSR tures, other stimuli such as free radicals, oxidants, and heavy metals are able to trigger the [9].[9]. The The heat heat shock shock proteins proteins (Hsps) (Hsps) are are down downstreamstream effectors effectors of of the the HSR HSR program. program. They They HSR [9]. The heat shock proteins (Hsps) are downstream effectors of the HSR program. actact as as molecular molecular chaperones chaperones to to facilitate facilitate prop properer protein protein folding folding as as well well as as to to prevent prevent the the They act as molecular chaperones to facilitate proper protein folding as well as to prevent accumulationaccumulation of of unfolded/misfolded unfolded/misfolded proteins proteins form formeded as as a a result result of of cellular cellular perturbations perturbations the accumulation of unfolded/misfolded proteins formed as a result of cellular perturba- or stressors [10]. Therefore, the stress response machinery serves to protect cells from pro- ortions stressors or stressors [10]. Therefore, [10]. Therefore, the stress the stressrespon responsese machinery machinery serves serves to protect to protect cells from cells frompro- teotoxic stress and severe cellular damages by maintaining proteostasis and normal func- teotoxicproteotoxic stress stress and severe and severe cellular cellular damages damages by maintaining by maintaining proteostasis proteostasis and normal and normal func- tions [10]. Like most cellular and molecular processes, the activation of HSR is tightly reg- tionsfunctions [10]. Like [10]. most Like mostcellular cellular and molecular and molecular processes, processes, the activation the activation of HSR of HSRis tightly is tightly reg- ulated by a specific transcription factor family known as heat shock factors (HSFs). Seven ulatedregulated by a byspecific a specific transcription transcription factor factor family family known known as heat as shock heat factors shock factors(HSFs). (HSFs).Seven members of the HSF family have been identified in mammals to date, which are: HSF1, membersSeven members of the HSF of the family HSF have family been have identi beenfied identified in mammals in mammals to date,to which date, are: which HSF1, are: HSF2,HSF1,HSF2, HSF3, HSF2,HSF3, HSF4, HSF3,HSF4, HSF5, HSF4,HSF5, HSFX, HSF5,HSFX, HSFX,and and HSFY HSFY and [1 HSFY[11].1]. The The [11 human]. human The human genome genome genome encodes encodes encodes all all these these all HSFstheseHSFs except HSFsexcept except for for HSF3, HSF3, for HSF3, which which which is is only only is onlyfound found found in in birds, birds, in birds, mice, mice, mice, and and andlizards lizards lizards [12–14]. [12–14]. [12–14 Phyloge- Phyloge-]. Phylo- neticgeneticnetic analysis analysis analysis of of ofhuman human human HSFs HSFs HSFs has has has revealed revealed revealed that that that HSF1, HSF1, HSF1, HSF4, HSF4, HSF4, and and and HSF2 HSF2 are are evolutionarily evolutionarily closerclosercloser to toto each eacheach other otherother in inin the thethe phylogenetic phylogenetic tree treetree (Figure (Figure 11). ).1). Collectively,Collectively, Collectively, HSF1,HSF1, HSF1, HSF2,HSF2, HSF2, andand and HSF4HSF4HSF4 share shareshare several severalseveral similar similarsimilar structural structuralstructural features featuresfeatures (i) (i)(i) a aa highly highly conserved conserved N-terminal N-terminal winged wingedwinged helix-turn-helixhelix-turn-helixhelix-turn-helix DNA-bindingDNA-binding domaindomain domain (DBD), (DBD), (DBD), (ii) (ii) (ii) a leucinea a leucine leucine zipper zipper zipper oligomerization oligomerization oligomerization domain do- do- mainthatmain comprisesthat that comprises comprises two heptadtwo two heptad heptad repeats repeats repeats HR-A/B HR-A/B HR-A/B (LZ1-3), (LZ1-3), (LZ1-3), (iii) a (iii) regulatory(iii) a a regulatory regulatory domain, domain, domain, and (iv) and and a (iv)C-terminus(iv) a a C-terminus C-terminus transactivation transactivation transactivation domain domain domain [15]. [15]. Besides,[15]. Besides, Besides, HSF1 HSF1 HSF1 and HSF2and and HSF2 HSF2 contain contain contain an additional an an addi- addi- tionalleucinetional leucine leucine zipper zipper zipper heptad heptad heptad repeat repeat HR-Crepeat HR-C (LZ4)HR-C at(LZ4) (LZ4) the C-terminusat at the the
Recommended publications
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Supp Table 1.Pdf
    Upregulated genes in Hdac8 null cranial neural crest cells fold change Gene Symbol Gene Title 134.39 Stmn4 stathmin-like 4 46.05 Lhx1 LIM homeobox protein 1 31.45 Lect2 leukocyte cell-derived chemotaxin 2 31.09 Zfp108 zinc finger protein 108 27.74 0710007G10Rik RIKEN cDNA 0710007G10 gene 26.31 1700019O17Rik RIKEN cDNA 1700019O17 gene 25.72 Cyb561 Cytochrome b-561 25.35 Tsc22d1 TSC22 domain family, member 1 25.27 4921513I08Rik RIKEN cDNA 4921513I08 gene 24.58 Ofa oncofetal antigen 24.47 B230112I24Rik RIKEN cDNA B230112I24 gene 23.86 Uty ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome 22.84 D8Ertd268e DNA segment, Chr 8, ERATO Doi 268, expressed 19.78 Dag1 Dystroglycan 1 19.74 Pkn1 protein kinase N1 18.64 Cts8 cathepsin 8 18.23 1500012D20Rik RIKEN cDNA 1500012D20 gene 18.09 Slc43a2 solute carrier family 43, member 2 17.17 Pcm1 Pericentriolar material 1 17.17 Prg2 proteoglycan 2, bone marrow 17.11 LOC671579 hypothetical protein LOC671579 17.11 Slco1a5 solute carrier organic anion transporter family, member 1a5 17.02 Fbxl7 F-box and leucine-rich repeat protein 7 17.02 Kcns2 K+ voltage-gated channel, subfamily S, 2 16.93 AW493845 Expressed sequence AW493845 16.12 1600014K23Rik RIKEN cDNA 1600014K23 gene 15.71 Cst8 cystatin 8 (cystatin-related epididymal spermatogenic) 15.68 4922502D21Rik RIKEN cDNA 4922502D21 gene 15.32 2810011L19Rik RIKEN cDNA 2810011L19 gene 15.08 Btbd9 BTB (POZ) domain containing 9 14.77 Hoxa11os homeo box A11, opposite strand transcript 14.74 Obp1a odorant binding protein Ia 14.72 ORF28 open reading
    [Show full text]
  • Redefining the Specificity of Phosphoinositide-Binding by Human
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins Nilmani Singh1†, Adriana Reyes-Ordoñez1†, Michael A. Compagnone1, Jesus F. Moreno Castillo1, Benjamin J. Leslie2, Taekjip Ha2,3,4,5, Jie Chen1* 1Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; 2Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205; 3Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; 4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205; 5Howard Hughes Medical Institute, Baltimore, MD 21205, USA †These authors contributed equally to this work. *Correspondence: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT Pleckstrin homology (PH) domains are presumed to bind phosphoinositides (PIPs), but specific interaction with and regulation by PIPs for most PH domain-containing proteins are unclear. Here we employed a single-molecule pulldown assay to study interactions of lipid vesicles with full-length proteins in mammalian whole cell lysates.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Myopia in African Americans Is Significantly Linked to Chromosome 7P15.2-14.2
    Genetics Myopia in African Americans Is Significantly Linked to Chromosome 7p15.2-14.2 Claire L. Simpson,1,2,* Anthony M. Musolf,2,* Roberto Y. Cordero,1 Jennifer B. Cordero,1 Laura Portas,2 Federico Murgia,2 Deyana D. Lewis,2 Candace D. Middlebrooks,2 Elise B. Ciner,3 Joan E. Bailey-Wilson,1,† and Dwight Stambolian4,† 1Department of Genetics, Genomics and Informatics and Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States 2Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States 3The Pennsylvania College of Optometry at Salus University, Elkins Park, Pennsylvania, United States 4Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States Correspondence: Joan E. PURPOSE. The purpose of this study was to perform genetic linkage analysis and associ- Bailey-Wilson, NIH/NHGRI, 333 ation analysis on exome genotyping from highly aggregated African American families Cassell Drive, Suite 1200, Baltimore, with nonpathogenic myopia. African Americans are a particularly understudied popula- MD 21131, USA; tion with respect to myopia. [email protected]. METHODS. One hundred six African American families from the Philadelphia area with a CLS and AMM contributed equally to family history of myopia were genotyped using an Illumina ExomePlus array and merged this work and should be considered co-first authors. with previous microsatellite data. Myopia was initially measured in mean spherical equiv- JEB-W and DS contributed equally alent (MSE) and converted to a binary phenotype where individuals were identified as to this work and should be affected, unaffected, or unknown.
    [Show full text]
  • Targeting PH Domain Proteins for Cancer Therapy
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2018 Targeting PH domain proteins for cancer therapy Zhi Tan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Medicinal Chemistry and Pharmaceutics Commons, Neoplasms Commons, and the Pharmacology Commons Recommended Citation Tan, Zhi, "Targeting PH domain proteins for cancer therapy" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 910. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/910 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TARGETING PH DOMAIN PROTEINS FOR CANCER THERAPY by Zhi Tan Approval page APPROVED: _____________________________________________ Advisory Professor, Shuxing Zhang, Ph.D. _____________________________________________
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Novel Mutations in HSF4 Cause Congenital Cataracts in Chinese
    Cao et al. BMC Medical Genetics (2018) 19:150 https://doi.org/10.1186/s12881-018-0636-3 RESEARCH ARTICLE Open Access Novel mutations in HSF4 cause congenital cataracts in Chinese families Zongfu Cao2,3,4†, Yihua Zhu5†, Lijuan Liu6†, Shuangqing Wu7, Bing Liu5, Jianfu Zhuang8, Yi Tong5, Xiaole Chen1, Yongqing Xie1, Kaimei Nie1, Cailing Lu2,4,XuMa2,3,4* and Juhua Yang1* Abstract Background: Congenital cataract, a kind of cataract presenting at birth or during early childhood, is a leading cause of childhood blindness. To date, more than 30 genes on different chromosomes are known to cause this disorder. This study aimed to identify the HSF4 mutations in a cohort from Chinese families affected with congenital cataracts. Methods: Forty-two unrelated non-syndromic congenital cataract families and 112 ethnically matched controls from southeast China were recruited from the southeast of China. We employed Sanger sequencing method to discover the variants. To confirm the novel mutations, STR haplotypes were constructed to check the co- segregation with congenital cataract. The pathogenic potential of the novel mutations were assessed using bioinformatics tools including SIFT, Polyphen2, and Human Splicing Finder. The pathogenicity of all the mutations was evaluated by the guidelines of American College of Medical Genetics and InterVar software. Results: No previously reported HSF4 mutations were found in all the congenital cataract families. Five novel HSF4 mutations including c.187 T > C (p.Phe63Leu), c.218G > T (p.Arg73Leu), c.233A > G (p.Tyr78Cys), IVS5 c.233-1G > A and c.314G > C (p.Ser105Thr) were identified in five unrelated families with congenital cataracts, respectively.
    [Show full text]
  • Diversification of the Caenorhabditis Heat Shock Response by Helitron Transposable Elements Jacob M Garrigues, Brian V Tsu, Matthew D Daugherty, Amy E Pasquinelli*
    RESEARCH ARTICLE Diversification of the Caenorhabditis heat shock response by Helitron transposable elements Jacob M Garrigues, Brian V Tsu, Matthew D Daugherty, Amy E Pasquinelli* Division of Biology, University of California, San Diego, San Diego, United States Abstract Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple Caenorhabditis species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in C. elegans. Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in C. elegans and C. briggsae and by strain-specific insertions among different wild isolates of C. elegans. Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the Caenorhabditis HSR. Introduction Heat Shock Factor 1 (HSF-1) is a highly conserved transcription factor that serves as a key regulator of the heat shock response (HSR) (Vihervaara et al., 2018). In response to elevated temperatures, HSF-1 binds well-conserved motifs, termed heat shock elements (HSEs), and drives the transcription *For correspondence: of genes important for mitigating the proteotoxic effects of heat stress. For example, HSF-1 pro- [email protected] motes the expression of heat-shock proteins (HSPs) that act as chaperones to prevent HS-induced misfolding and aggregation of proteins (Vihervaara et al., 2018).
    [Show full text]
  • IDENTIFYING a ROLE for HEAT SHOCK PROTEINS in SCHISTOSOMA MANSONI by KENJI ISHIDA CASE WESTERN RESERVE UNIVERSITY
    IDENTIFYING A ROLE FOR HEAT SHOCK PROTEINS IN SCHISTOSOMA MANSONI by KENJI ISHIDA Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology CASE WESTERN RESERVE UNIVERSITY August 2017 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Kenji Ishida candidate for the degree of Doctor of Philosophy Committee Chair Michael Benard Committee Member Ronald Blanton Committee Member Christopher Cullis Committee Member Claudia Mieko Mizutani Committee Member Emmitt R. Jolly Date of Defense April 26, 2017 *We also certify that written approval has been obtained for any proprietary material contained therin. Table of Contents Table of Contents Table of Contents ............................................................................................................. iii List of Figures .................................................................................................................. vii List of Abbreviations ...................................................................................................... viii Abstract ........................................................................................................................... xiv Chapter 1: Introduction ................................................................................................... 1 1.1 Purpose ...................................................................................................................... 1 1.2 Schistosomiasis
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • ANG II Promotes IGF-IIR Expression and Cardiomyocyte Apoptosis by Inhibiting HSF1 Via JNK Activation and SIRT1 Degradation
    Cell Death and Differentiation (2014) 21, 1262–1274 & 2014 Macmillan Publishers Limited All rights reserved 1350-9047/14 www.nature.com/cdd ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation C-Y Huang1, W-W Kuo2, Y-L Yeh3,4, T-J Ho5,6, J-Y Lin7,8, D-Y Lin1, C-H Chu1, F-J Tsai6, C-H Tsai9 and C-Y Huang*,1,6,10 Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure. Our previous studies found that the activation of insulin-like growth factor receptor II (IGF-IIR) signaling was critical for hypertensive angiotensin II (ANG II)-induced cardiomyocyte apoptosis. However, the detailed mechanism by which ANG II regulates IGF-IIR in heart cells remains elusive. In this study, we found that ANG II activated its downstream kinase JNK to increase IGF-IIR expression through the ANG II receptor angiotensin type 1 receptor. JNK activation subsequently led to sirtuin 1 (SIRT1) degradation via the proteasome, thus preventing SIRT1 from deacetylating heat-shock transcription factor 1 (HSF1). The resulting increase in the acetylation of HSF1 impaired its ability to bind to the IGF-IIR promoter region (nt À 748 to À 585). HSF1 protected cardiomyocytes by acting as a repressor of IGF-IIR gene expression, and ANG II diminished this HSF1-mediated repression through enhanced acetylation, thus activating the IGF-IIR apoptosis pathway. Taken together, these results suggest that HSF1 represses IGF-IIR gene expression to protect cardiomyocytes. ANG II activates JNK to degrade SIRT1, resulting in HSF1 acetylation, which induces IGF-IIR expression and eventually results in cardiac hypertrophy and apoptosis.
    [Show full text]