Hunting Monolignol Transporters: Membrane Proteomics and Biochemical Transport Assays with Membrane Vesicles Of

Total Page:16

File Type:pdf, Size:1020Kb

Hunting Monolignol Transporters: Membrane Proteomics and Biochemical Transport Assays with Membrane Vesicles Of Journal of Experimental Botany, Vol. 71, No. 20 pp. 6379–6395, 2020 doi:10.1093/jxb/eraa368 Advance Access Publication 10 August 2020 This paper is available online free of all access charges (see https://academic.oup.com/jxb/pages/openaccess for further details) RESEARCH PAPER Hunting monolignol transporters: membrane proteomics and biochemical transport assays with membrane vesicles of Norway spruce Downloaded from https://academic.oup.com/jxb/article/71/20/6379/5890496 by Umea University Library user on 05 February 2021 Enni Väisänen1,2,*, Junko Takahashi1,3, , Ogonna Obudulu3,7, , Joakim Bygdell4, , Pirkko Karhunen5, Olga Blokhina1, , Teresa Laitinen2, Teemu H. Teeri2, , Gunnar Wingsle3, , Kurt V. Fagerstedt1, , and Anna Kärkönen2,6,*, 1 Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland 2 Viikki Plant Science Centre, Department of Agricultural Sciences, University of Helsinki, 00014 Helsinki, Finland 3 Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 90183 Umeå, Sweden 4 Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, 90187 Umeå, Sweden 5 Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland 6 Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, 00790 Helsinki, Finland 7 Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden * Correspondence: [email protected] or [email protected] Received 21 January 2020; Editorial decision 28 July 2020; Accepted 2 August 2020 Editor: Qiao Zhao, Chinese Academy of Sciences, China Abstract Both the mechanisms of monolignol transport and the transported form of monolignols in developing xylem of trees are unknown. We tested the hypothesis of an active, plasma membrane-localized transport of monolignol monomers, dimers, and/or glucosidic forms with membrane vesicles prepared from developing xylem and lignin-forming tissue- cultured cells of Norway spruce (Picea abies L. Karst.), as well as from control materials, comprising non-lignifying Norway spruce phloem and tobacco (Nicotiana tabacum L.) BY-2 cells. Xylem and BY-2 vesicles transported both coniferin and p-coumaryl alcohol glucoside, but inhibitor assays suggested that this transport was through the tono- plast. Membrane vesicles prepared from lignin-forming spruce cells showed coniferin transport, but the Km value for coniferin was much higher than those of xylem and BY-2 cells. Liquid chromatography-mass spectrometry analysis of membrane proteins isolated from spruce developing xylem, phloem, and lignin-forming cultured cells revealed multiple transporters. These were compared with a transporter gene set obtained by a correlation analysis with a selected set of spruce monolignol biosynthesis genes. Biochemical membrane vesicle assays showed no support for ABC-transporter-mediated monolignol transport but point to a role for secondary active transporters (such as MFS or MATE transporters). In contrast, proteomic and co-expression analyses suggested a role for ABC transporters and MFS transporters. Keywords: Lignin biosynthesis, monolignol transport, plasma membrane, proteomics, transporter proteins. © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 6380 | Väisänen et al. Introduction Lignification of plant cell walls is a developmental process in In addition, transport of dilignols seems possible. The pres- water-transporting xylem cells and support-giving scleren- ence of conjugates of sinapyl alcohol and p-coumaric acid in chyma cells. In addition, it can be an induced as a protective grass lignin suggests that there is a system that transports dimers response against stresses. In lignification, hydroxycinnamic al- into the apoplast, since a transferase making these conjugates cohols (monolignols) form a polymer in the cell wall. The bio- exists in the cytoplasm (Hatfield et al., 2008, 2009). It seems synthetic process of lignification includes the production of possible that the first step of polymerization, dimerization, oc- monolignols through the monolignol biosynthetic pathway, a curs partly in the cytosol, and the dimer is transported to the branch of the phenylpropanoid pathway. Next, monolignols cell wall and incorporated into the growing polymer. are secreted into the cell wall, oxidized to radicals, and the rad- In the current study, membrane proteomic analysis of Downloaded from https://academic.oup.com/jxb/article/71/20/6379/5890496 by Umea University Library user on 05 February 2021 icals are polymerized into lignin, a complex network of link- developing xylem with active lignification and lignin-forming ages between monolignols (Perkins et al., 2019). The process is tissue-cultured cells (Kärkönen et al., 2002) of Norway spruce mediated by a wide variety of enzymes in multiple locations. (Picea abies) was conducted. As a comparison, the membrane The plasma membrane (PM) serves the plant cell as a con- proteome of developing phloem, which does not lignify (except trolling boundary between the cell wall and the cytoplasm. stone cells), was investigated. Microsomal vesicles (microsomal This boundary has many roles, including maintaining cellular fraction; MF) are a heterogeneous mixture of cellular mem- ionic homeostasis, creating concentration gradients, and thus branes. Partially enriched PM vesicles (upper phase fraction; regulating biochemical reactions, and detecting and mediating UP) (Kärkönen et al., 2014) were prepared from MF material signals between the apoplast and the symplast. In addition, the and their proteomes were analyzed by liquid chromatography- PM is important for cell wall biosynthesis because cellulose mass spectrometry (LC-MS/MS). To take a closer look at is produced directly at the PM. The biosynthesis of lignin is membrane-localized, putatively lignification-related proteins, separated in space: monolignol biosynthesis takes place in the protein identifications were compared with several published cytoplasm and lignin polymerization occurs in the cell wall. gene expression studies (Nystedt et al., 2013; Jokipii-Lukkari Thus, monolignols require transportation through the PM et al., 2017; Laitinen et al., 2017; Blokhina et al., 2019), and can- to the site of polymerization. According to biochemical data, didates for monolignol transport and other lignification-related transport of monolignols through the PM involves enzym- processes were identified. Biochemical monolignol transport atic transporters (Miao and Liu, 2010; Alejandro et al., 2012). assays with multiple candidate transport forms showed that MF Still, passive diffusion has a likely role in aglycone transport prepared from developing xylem, but not those from developing (Boija and Johansson, 2006; Vermaas et al., 2019), whereas phloem, had a H+-gradient-dependent, secondary active, Golgi-mediated transport does not seem probable (Kaneda tonoplast-localized transport of coniferin and p-coumaryl al- et al., 2008). cohol glucoside. A strikingly similar, active tonoplast-localized The transport mechanism of monolignols has remained as coniferin and p-coumaryl alcohol glucoside transport was de- a mystery (Perkins et al., 2019). Even the transported form tected in MF prepared from non-lignifying control material, is not yet known. The most favored candidates, monolignol consisting of tissue-cultured Bright Yellow-2 (BY-2) cells of to- glucosides (such as coniferyl alcohol glucoside, or coniferin), bacco (Nicotiana tabacum). This observation questions whether are non-toxic, non-reactive, and readily detectable mol- this transporter is dedicated to lignin biosynthesis. In addition, ecules in the developing secondary xylem of many gymno- MF isolated from the lignin-forming cultured cells had a trans- sperms (Morikawa et al., 2010; Terashima et al., 2016) porter able to transport coniferin, but its affinity for coniferin and some angiosperms (e.g. Magnolia; Tsuji et al., 2004). was much lower than those in xylem or BY-2 cells. In combin- Coniferin β-glucosidases, which have been detected in, for ation with the proteomic data, correlation analyses using ex- example, developing xylem of lodgepole pine (Pinus contorta; isting Norway spruce RNA-seq data were utilized to identify Dharmawardhana et al., 1995), cleave the sugar moiety, leaving candidate monolignol transporters. the free alcohol form ready to react with peroxidases/laccases and the growing lignin polymer. Results using coniferyl al- cohol and coniferin in assays with membrane vesicles prepared Materials and methods from aerial tissues of Arabidopsis thaliana (Miao and Liu, 2010) suggest a role for PM-located ABC transporter(s) in coniferyl Plant material alcohol transport. In addition, Alejandro et al. (2012) pro- In each of the years 2011, 2013, and 2014, an approximately 40-year- posed that a G-type ABC transporter, AtABCG29, functions old Norway spruce (Picea abies [L.] Karst., clone E8504) tree, grown in in p-coumaryl alcohol transport at the PM in Arabidopsis root Ruotsinkylä,
Recommended publications
  • ABSTRACT SONG, XIAO. Investigating the Role and Structure of Free Radicals in Lignin Biosynthesis
    ABSTRACT SONG, XIAO. Investigating the Role and Structure of Free Radicals in Lignin Biosynthesis. (Under the direction of Prof. Tatyana Smirnova). Lignin is the second most abundant biopolymer on earth after cellulose that contributes to the overall viability and sustainability of the plant kingdom. Understanding molecular details of the lignin formation and cross-linking is of fundamental importance to production of biomass streams. Although the processes of monolignols oxidative dehydrogenation, polymerization and cross-linking to cell walls are proposed to occur through a free radical mechanism, the specific details remain elusive. In order to understand molecular mechanisms of these reactions, we investigated formation of radicals during enzyme-catalyzed (HRP or Laccase) oxidative dehydrogenation of twelve monolignols. To characterize short-lived radicals formed during the enzymatic reaction we employed EPR spectroscopy in combination with spin-trapping technique and deduced the structures and spatial conformations of radicals. We also utilized continuous- flow EPR in combination with enzyme surface immobilization to detect the formation of transient monolignol radicals and thus patterned their isotropic hyperfine parameters that allow for the mapping of unpaired electron distribution. Polymerized radicals formed as a result of the coupling of enzyme-generated monolignol radicals. The effective -factors and ∆퐻푃−푃 of EPR spectra of polymerized radicals could be used as a reference to identify the polymeric radicals obtained from monolignols by different methods and paramagnetic species in natural lignin. We further generated a monolignol radical using consecutive enzymatic deglucosidation and oxidative dehydrogenation of a monolignol glucoside. This approach could be used to probe the isotropic hyperfine interactions of radical structures of monolignols with limited solubility in water by continuous-flow EPR method, especially for monolignol hydroxycinnamate conjugate compounds whose isotropic hyperfine component have not been studied yet.
    [Show full text]
  • Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency
    Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Abadia, Frederic Gaymard, Javier Abadia, Ana Alvarez-Fernandez To cite this version: Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Aba- dia, et al.. Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH. Frontiers in Plant Science, Frontiers, 2016, 7, pp.1711. 10.3389/fpls.2016.01711. hal-01417731 HAL Id: hal-01417731 https://hal.archives-ouvertes.fr/hal-01417731 Submitted on 15 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at
    [Show full text]
  • Global Journal of Research in Engineering
    Online ISSN : 2249-4596 Print ISSN : 0975-5861 DOI : 10.17406/GJRE SolarCellApplication GravitySeparationAndLeaching AzaraNassarawaBariteMineralOre WasteWoodfromaParquetFactory VOLUME17ISSUE5VERSION1.0 Global Journal of Researches in Engineering: J General Engineering Global Journal of Researches in Engineering: J General Engineering Volume 17 Issue 5 (Ver. 1.0) Open Association of Research Society Global Journals Inc. © Global Journal of (A Delaware USA Incorporation with “Good Standing”; Reg. Number: 0423089) Sponsors:Open Association of Research Society Researches in Engineering. Open Scientific Standards 2017. All rights reserved. Publisher’s Headquarters office This is a special issue published in version 1.0 ® of “Global Journal of Researches in Global Journals Headquarters Engineering.” By Global Journals Inc. 945th Concord Streets, All articles are open access articles distributed Framingham Massachusetts Pin: 01701, under “Global Journal of Researches in Engineering” United States of America Reading License, which permits restricted use. USA Toll Free: +001-888-839-7392 Entire contents are copyright by of “Global USA Toll Free Fax: +001-888-839-7392 Journal of Researches in Engineering” unless otherwise noted on specific articles. Offset Typesetting No part of this publication may be reproduced or transmitted in any form or by any means, Global Journals Incorporated electronic or mechanical, including photocopy, recording, or any information 2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey, storage and retrieval system, without written Pin: CR9 2ER, United Kingdom permission. The opinions and statements made in this Packaging & Continental Dispatching book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and Global Journals Pvt Ltd no warranty or fitness is implied.
    [Show full text]
  • Para-Coumaryl Coniferyl Sinapyl Alcohol Alcohol Alcohol Patent Application Publication Dec
    US 2003O226168A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0226168 A1 Carlson (43) Pub. Date: Dec. 4, 2003 (54) PLANT PREPARATIONS Publication Classification (76) Inventor: Peter S. Carlson, Chevy Chase, MD (51) Int. Cl. ............................ A01H 1700; C12N 15/82; (US) C12O 1/18 Correspondence Address: (52) U.S. Cl. .............................................. 800/279; 435/32 FOLEY AND LARDNER SUTE 500 (57) ABSTRACT 3000 KSTREET NW WASHINGTON, DC 20007 (US) The present invention provides methods for slowing down (21) Appl. No.: 10/366,720 the rate at which plant biomaterials, Such as lignin, are degraded, thereby improving the terrestrial Storage of carbon (22) Filed: Feb. 14, 2003 by reducing the amount of gaseous carbon dioxide released Related U.S. Application Data into the atmosphere upon biodegradation. The inventive methods contemplate the modification of plant macromol (60) Provisional application No. 60/403,650, filed on Aug. ecules to make them more resistant to degradation as well as 16, 2002. Provisional application No. 60/356,730, the treatment of living and non-living plants with fungicides filed on Feb. 15, 2002. to prolong the rate of plant breakdown. CH2OH CH2OH CHOH 1. 1. 1 OCH3 H3CO OCH3 OH OH OH para-coumaryl coniferyl sinapyl alcohol alcohol alcohol Patent Application Publication Dec. 4, 2003. Sheet 1 of 4 US 2003/0226168A1 ZHOHO?HOHOZHOHO £HOOOOºH£HOO HOHOHO Patent Application Publication Dec. 4, 2003. Sheet 3 of 4 US 2003/0226168A1 Á??Su??u|6u?u?e?su????OS -0||Á?Sue?u?6u?u?e?su?uô?T-||-------------------------------- uosuno?udp????polN AISueu fuuleS Patent Application Publication Dec.
    [Show full text]
  • Engineering a Monolignol 4-O-Methyltransferase with High Selectivity for the Condensed Lignin Precursor Coniferyl Alcohol
    BNL-111732-2016-JA Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol Y. Cai, M-W Bhuiya, J. Shanklin, C-J Liu Brookhaven National Laboratory, Upton, NY 11973 USA Submitted to the Journal of Biological Chemistry September 2015 Biology Department Brookhaven National Laboratory U.S. Department of Energy DOE Office of Basic Energy Sciences Notice: This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]
  • Metabolic Changes of Cholangiocarcinoma Cells in Response to Coniferyl Alcohol Treatment
    biomolecules Article Metabolic Changes of Cholangiocarcinoma Cells in Response to Coniferyl Alcohol Treatment Bundit Promraksa 1,2, Praewpan Katrun 3,4, Jutarop Phetcharaburanin 1,2,3,5 , Yingpinyapat Kittirat 1,2, Nisana Namwat 1,2 , Anchalee Techasen 2,6, Jia V. Li 7 and Watcharin Loilome 1,2,* 1 Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; [email protected] (B.P.); [email protected] (J.P.); [email protected] (Y.K.); [email protected] (N.N.) 2 Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; [email protected] 3 Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; [email protected] 4 Department of Chemistry, Khon Kaen University, Khon Kaen 40002, Thailand 5 International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen 40002, Thailand 6 Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand 7 Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; [email protected] * Correspondence: [email protected] Abstract: Cholangiocarcinoma (CCA) is a major cause of mortality in Northeast Thailand with about 14,000 deaths each year. There is an urgent necessity for novel drug discovery to increase effective Citation: Promraksa, B.; Katrun, P.; treatment possibilities. A recent study reported that lignin derived from Scoparia dulcis can cause Phetcharaburanin, J.; Kittirat, Y.; CCA cell inhibition. However, there is no evidence on the inhibitory effect of coniferyl alcohol (CA), Namwat, N.; Techasen, A.; Li, J.V.; which is recognized as a major monolignol-monomer forming a very complex structure of lignin.
    [Show full text]
  • Wood Based Lignin Reactions Important to the Biorefinery and Pulp and Paper Industries
    PEER-REVIEWED REVIEW ARTICLE bioresources.com Wood Based Lignin Reactions Important to the Biorefinery and Pulp and Paper Industries Ricardo B. Santos,a,* Peter W. Hart,a Hasan Jameel,b and Hou-min Chang b The cleavage of lignin bonds in a wood matrix is an important step in the processes employed in both the biorefinery and pulp and paper industries. β-O-4 ether linkages are susceptible to both acidic and alkaline hydrolysis. The cleavage of α-ether linkages rapidly occurs under mildly acidic reaction conditions, resulting in lower molecular weight lignin fragments. Acidic reactions are typically employed in the biorefinery industries, while alkaline reactions are more typically employed in the pulp and paper industries, especially in the kraft pulping process. By better understanding lignin reactions and reaction conditions, it may be possible to improve silvicultural and breeding programs to enhance the formation of easily removable lignin, as opposed to more chemically resistant lignin structures. In hardwood species, the S/G ratio has been successfully correlated to the amount of β-O-4 ether linkages present in the lignin and the ease of pulping reactions. Keywords: Biorefinery; Lignin reactions; Kraft pulping; Cooking; Hardwood; Softwood; Enzymatic hydrolysis; S/G; S/V Contact information: a: MeadWestvaco Corporation, 501 South 5th Street, Richmond, VA, 23219, USA; b: Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC 27695-8005 USA; *Corresponding author: [email protected] INTRODUCTION Wood is a naturally occurring mixture of various organic polymers. Cellulose is a partially crystalline polymer that is reasonably chemical-resistant and has the ability to form hydrogen bonds.
    [Show full text]
  • Discovery of Modules Involved in the Biosynthesis and Regulation of Maize Phenolic Compounds T
    Plant Science 291 (2020) 110364 Contents lists available at ScienceDirect Plant Science journal homepage: www.elsevier.com/locate/plantsci Discovery of modules involved in the biosynthesis and regulation of maize phenolic compounds T Lina Gomez-Canoa, Fabio Gomez-Canoa, Francisco M. Dillona, Roberto Alers-Velazquezb, Andrea I. Doseffc, Erich Grotewolda, John Grayd,* a Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA b Molecular Biology Graduate Program, University of Toledo, Toledo, OH, 43606, USA c Department of Physiology, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA d Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA ARTICLE INFO ABSTRACT Keywords: Phenolic compounds are among the most diverse and widespread of specialized plant compounds and underly Phenylpropanoid many important agronomic traits. Our comprehensive analysis of the maize genome unraveled new aspects of Maize the genes involved in phenylpropanoid, monolignol, and flavonoid production in this important crop. Co-expression Remarkably, just 19 genes accounted for 70 % of the overall mRNA accumulation of these genes across 95 Enzymatic module tissues, indicating that these are the main contributors to the flux of phenolic metabolites. Eighty genes with Regulatory module intermediate to low expression play minor and more specialized roles. Remaining genes are likely undergoing Regulomics loss of function or are expressed in limited cell types. Phylogenetic and expression analyses revealed which members of gene families governing metabolic entry and branch points exhibit duplication, subfunctionaliza- tion, or loss of function. Co-expression analysis applied to genes in sequential biosynthetic steps revealed that certain isoforms are highly co-expressed and are candidates for metabolic complexes that ensure metabolite delivery to correct cellular compartments.
    [Show full text]
  • Casparian Strip Diffusion Barrier in Arabidopsis Is Made of a Lignin Polymer Without Suberin
    Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin Sadaf Naseera, Yuree Leea, Catherine Lapierreb, Rochus Frankec, Christiane Nawratha, and Niko Geldnera,1 aDepartment of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, CH-1015 Lausanne, Switzerland; bInstitut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, F-78026 Versailles, France; and cEcophysiology of Plants, Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany Edited by Philip N. Benfey, Duke University, Durham, NC, and approved May 7, 2012 (received for review April 12, 2012) Casparian strips are ring-like cell-wall modifications in the root barrier could be perfectly fulfilled by this hydrophobic polymer. endodermis of vascular plants. Their presence generates a para- A number of problems have long prevented drawing conclusions cellular barrier, analogous to animal tight junctions, that is thought about the chemical nature of Casparian strips. First, the ring-like to be crucial for selective nutrient uptake, exclusion of pathogens, Casparian strips represent only the first stage of endodermal dif- and many other processes. Despite their importance, the chemical ferentiation, which is followed by the deposition of suberin lamel- nature of Casparian strips has remained a matter of debate, con- lae all around the cellular surface of endodermal cells (secondary founding further molecular analysis. Suberin, lignin, lignin-like stage) (9). Therefore, chemical analysis of whole roots, or even of polymers, or both, have been claimed to make up Casparian strips. isolated endodermal tissues, will always find both of the polymers Here we show that, in Arabidopsis, suberin is produced much too present.
    [Show full text]
  • Eugenol and Isoeugenol, Characteristic Aromatic Constituents of Spices, Are Biosynthesized Via Reduction of a Coniferyl Alcohol Ester
    Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester Takao Koeduka*†, Eyal Fridman*†‡, David R. Gang†§, Daniel G. Vassa˜ o¶, Brenda L. Jackson§, Christine M. Kishʈ, Irina Orlovaʈ, Snejina M. Spassova**, Norman G. Lewis¶, Joseph P. Noel**, Thomas J. Baiga**, Natalia Dudarevaʈ, and Eran Pichersky*†† *Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048; §Department of Plant Sciences and Institute for Biomedical Science and Biotechnology, University of Arizona, Tucson, AZ 85721-0036; ¶Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340; ʈDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; and **Howard Hughes Medical Institute, Jack H. Skirball Chemical Biology and Proteomics Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 Communicated by Anthony R. Cashmore, University of Pennsylvania, Philadelphia, PA, May 5, 2006 (received for review March 31, 2006) Phenylpropenes such as chavicol, t-anol, eugenol, and isoeugenol are produced by plants as defense compounds against animals and microorganisms and as floral attractants of pollinators. Moreover, humans have used phenylpropenes since antiquity for food pres- ervation and flavoring and as medicinal agents. Previous research suggested that the phenylpropenes are synthesized in plants from substituted phenylpropenols, although the identity of the en- zymes and the nature of the reaction mechanism involved in this transformation have remained obscure. We show here that glan- dular trichomes of sweet basil (Ocimum basilicum), which synthe- size and accumulate phenylpropenes, possess an enzyme that can use coniferyl acetate and NADPH to form eugenol.
    [Show full text]
  • A 13C NMR Study Using Isotopically Labeled Precursors
    3298 J. Agric. Food Chem. 2000, 48, 3298−3304 Biosynthesis, Molecular Structure, and Domain Architecture of Potato Suberin: A 13C NMR Study Using Isotopically Labeled Precursors Bin Yan and Ruth E. Stark* Department of Chemistry, Graduate School and College of Staten Island of the City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314 Although suberin in potato wound periderm is known to be a polyester containing long-chain fatty acids and phenolics embedded within the cell wall, many aspects of its molecular structure and polymer-polymer connectivities remain elusive. The present work combines biosynthetic incorpora- tion of site-specifically 13C-enriched acetates and phenylalanines with one- and two-dimensional solid-state 13C NMR spectroscopic methods to monitor the developing suberin polymer. Exogenous acetate is found to be incorporated preferentially at the carboxyl end of the aliphatic carbon chains, suggesting addition during the later elongation steps of fatty acid synthesis. Carboxyl-labeled phenylalanine precursors provide evidence for the concurrent development of phenolic esters and of monolignols typical of lignin. Experiments with ring-labeled phenylalanine precursors demonstrate a predominance of sinapyl and guaiacyl structures among suberin’s phenolic moieties. Finally, the analysis of spin-exchange (solid-state NOESY) NMR experiments in ring-labeled suberin indicates distances of no more than 0.5 nm between pairs of phenolic and oxymethine carbons, which are attributed to the aromatic-aliphatic polyester and the cell wall polysaccharide matrix, respectively. These results offer direct and detailed molecular information regarding the insoluble intermediates of suberin biosynthesis, indicate probable covalent linkages between moieties of its polyester and polysaccharide domains, and yield a clearer overall picture of this agriculturally important protective material.
    [Show full text]
  • Insights Into the Molecular Regulation of Monolignol-Derived Product Biosynthesis in the Growing Hemp Hypocotyl Marc Behr1,2, Kjell Sergeant1, Céline C
    Behr et al. BMC Plant Biology (2018) 18:1 DOI 10.1186/s12870-017-1213-1 RESEARCHARTICLE Open Access Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl Marc Behr1,2, Kjell Sergeant1, Céline C. Leclercq1, Sébastien Planchon1, Cédric Guignard1, Audrey Lenouvel1, Jenny Renaut1, Jean-Francois Hausman1, Stanley Lutts2 and Gea Guerriero1* Abstract Background: Lignin and lignans are both derived from the monolignol pathway. Despite the similarity of their building blocks, they fulfil different functions in planta. Lignin strengthens the tissues of the plant, while lignans are involved in plant defence and growth regulation. Their biosyntheses are tuned both spatially and temporally to suit the development of the plant (water conduction, reaction to stresses). We propose to study the general molecular events related to monolignol-derived product biosynthesis, especially lignin. It was previously shown that the growing hemp hypocotyl (between 6 and 20 days after sowing) is a valid system to study secondary growth and the molecular events accompanying lignification. The present work confirms the validity of this system, by using it to study the regulation of lignin and lignan biosynthesis. Microscopic observations, lignin analysis, proteomics, together with in situ laccase and peroxidase activity assays were carried out to understand the dynamics of lignin synthesis during the development of the hemp hypocotyl. Results: Based on phylogenetic analysis and targeted gene expression, we suggest a role for the hemp dirigent and dirigent-like proteins in lignan biosynthesis. The transdisciplinary approach adopted resulted in the gene- and protein-level quantification of the main enzymes involved in the biosynthesis of monolignols and their oxidative coupling (laccases and class III peroxidases), in lignin deposition (dirigent-like proteins) and in the determination of the stereoconformation of lignans (dirigent proteins).
    [Show full text]